Mathematics As A Liberal Art

Math 105 Spring 2024
(86) 2024 Ron Buckmire

Fowler 309 MWF 3:00pm- $3: 55 \mathrm{pm}$
http://sites.oxy.edu/ron/math/105/24/

Class 3: Friday January 26

The Poison Game
The Poison Game is a two-player game where there are N poison pills in front of the players. Each player can take 1 or 2 pills on their turn. The player whose turn it is when one pill is left has to take the poison pill and loses!

Let's consider what happens as the number N varies from 1 to 10 and try to see if we can find a pattern in who wins the game, Player One or Player Two, and how it depends on the number N of pills in the pot and the strategies used by the player.

GROUPWORK

Play the Poison game with a varying number of pills and see if any patterns emerge.

Is there a winning strategy for either of the players?

Write down which player wins the poison game when N varies in the table below

N Number of pills	1	2	3	4	5	6	7	8	9	10	PATTERN 1	PATTERN 2	PATTERN 3
Winning Player													

Analyzing The Poison Game

Q: What's the simplest case?
A: $N=1$.
Q: Who wins in this case?
A: \qquad
Q: What's the next simplest case?
A: $N=2$.
Q: Who wins in this case?
A:
Q: What's the next simplest case?
A: $N=3$.
Q: Who wins in this case?
A: \qquad
Q: What's the next simplest case?
A: $N=4$.
Q: Who wins in this case?
A: \qquad
Q: What's the winning strategy in this case?
A: \qquad
Q: What's the next simplest case?
A: $N=5$.
Q: Who wins in this case?
A: \qquad
Q: What's the winning strategy in this case?
A: \qquad
Q: What's the next simplest case?
A: $N=6$.
Q: Who wins in this case?
A: \qquad
Q: What's the winning strategy in this case?
A: \qquad
A: $N=7$.
Q: Who wins in this case?
A: \qquad
Q: What's the winning strategy in this case?
A: \qquad

QUESTION

What patterns do we notice?

Three Cases To Analyze

Case 1: $N=4,7,10,13,16,19, \ldots=3 k+1$

Case 2: $N=5,8,11,14,17,20, \ldots=3 k+2$

Case 3: $N=6,9,12,15,18,21, \ldots=3 k+3$

Equivalent Numbers

The fact that in our analysis of Poison we found out that games that had $3 k+1$ pills, $3 k+2$ pills and $3 k+3$ pills were all the same, or that

$$
4 \equiv 7 \equiv 10 \equiv 13 \equiv 16 \equiv 19 \ldots
$$

is an example of modular arithmetic.
We would say mathematically that $7 \equiv 1(\bmod 3)$.
Similarly, we can say that $14 \equiv 2(\bmod 3)$ and $18 \equiv 3(\bmod 3)$

DEFINITION: modular arithmetic

Given two positive integers a and b, they are said to be congruent modulo \mathbf{n} if the difference between a and b is an integer multiple of n, or in other words n evenly divides $a-b$. The number n is known as the modulus of the congruence. The notation we use is

$$
a=b \bmod n
$$

When we say "two numbers are congruent modulo 3 " we know that the difference of the two numbers must be a multiple of 3 . Thus we know that in modulo 3 instead of counting $0,1,2,3,4,5,6,7,8,9,10,11, \ldots$ we count $0,1,2,0,1,2,0,1,2,0,1,2, \ldots$ DEFINITION: residue
The modulo- n residue of a is b when $a \equiv b(\bmod n)$ and we know that $0 \leq b<n$.
We say that there are three residue classes modulo 3 . In general, if your modulus is n there are n residues classes ranging from 0 to $n-1$. These are the numbers $0,1,2,3,4,5$, $\ldots, n-1$.

Examples of Modular Arithmetic

The most common example of modular arithmetic involves clocks and time. There are 60 seconds in a minute and 60 minutes in a hour, so the modulus is 60 . We tell time in 12 hour shifts so the modulus is 12 in hours.

7 hours past 6 o'clock is not 13 o'clock, it is 1 o'clock (i.e. $13-12=1$)
$13 \equiv 1(\bmod 12)$ or $7+6 \equiv 1(\bmod 12)$
20 minutes after one-quarter before the hour is the same thing as 5 after the hour $45+20 \equiv 5(\bmod 60)$

EXERCISE

Try to evaluate the following using modular arithmetic

1. $6+8 \equiv _(\bmod 3)$
2. $-1(\bmod 3)$
3. $-1(\bmod 7)$
4. $9+6 \equiv$ _ $(\bmod 5)$
5. $9+6 \equiv$ - $(\bmod 4)$

Modular Arithmetic Rules

Addition Using Modular Arithmetic

Given that $a \equiv b(\bmod \mathrm{n})$ and $c \equiv d(\bmod \mathrm{n})$ then it is true that $a+c \equiv(b+d)(\bmod \mathrm{n})$

Subtraction Using Modular Arithmetic

Given that $a \equiv b(\bmod \mathrm{n})$ and $c \equiv d(\bmod \mathrm{n})$ then it is true that $a-c \equiv(b-d)(\bmod \mathrm{n})$

Multiplication Using Modular Arithmetic

Given that $a \equiv b(\bmod \mathrm{n})$ and $c \equiv d(\bmod \mathrm{n})$ then it is true that $a c \equiv b d(\bmod \mathrm{n})$

Exponentiation Using Modular Arithmetic

Given that $a \equiv b(\bmod \mathrm{n})$ and p is a positive integer then it is true that $a^{p} \equiv b^{p}(\bmod \mathrm{n})$

GROUPWORK

Come up with your own examples of problems that correspond to each of the four cases of Addition, Subtraction, Multiplication and Exponentiation using Modular Arithmetic.

1. ADDITION (let $n=3$)
2. SUBTRACTION (let $n=4$)
3. MULTIPLICATION (let $n=9$)
4. EXPONENTIATION (let $n=5$)

Let's use modular arithmetic for find the last two digits (i.e. the tens and units digits) of 7^{1942} (HINT: The modulus we need to use is 100 !)

What are the residue classes of $7^{k}(\bmod 100) ?$

What can we simplify the expression $7^{4 k}(\bmod 100)$ as?

Can we write 1942 as $4 k+j$ where k and j are integers and j is $0,1,2$ or 3 ? Do it!

So, what are the last two digits of 7^{1942} ?

