Mathematics As A Liberal Art

Math 105 Spring 2024 2024 Ron Buckmire Fowler 309 MWF 3:00pm- 3:55pm http://sites.oxy.edu/ron/math/105/24/

Class 3: Friday January 26

The Poison Game

The Poison Game is a two-player game where there are N poison pills in front of the players. Each player can take 1 or 2 pills on their turn. The player whose turn it is when one pill is left has to take the poison pill and loses!

Let's consider what happens as the number N varies from 1 to 10 and try to see if we can find a pattern in who wins the game, Player One or Player Two, and how it depends on the number N of pills in the pot and the strategies used by the player.

GROUPWORK

Play the Poison game with a varying number of pills and see if any patterns emerge.

Is there a winning strategy for either of the players?

N Number of pille		2 3		-		7 8		10	varies in the ta	PATTERN 2	PATTERN
N Number of pills Winning Player	1) 4	0	0		9	10	TALLERINI	TALLERIN Z	TALLERN
winning Flayer											
Analyzing The	Po	oisor	n G	am	e						
Q: What's the simple	est	case?									
A: $N = 1$.											
Q: Who wins in this	cas	se?									
A:											
Q: What's the next s	sim	plest	case?)							
A: $N = 2$.											
Q: Who wins in this	cas	se?									
A:											
Q: What's the next s	sim	plest	case?)							
A: $N = 3$.											
Q: Who wins in this	cas	se?									
A:											
Q: What's the next s	sim	plest	case?)							
A: $N = 4$.											
Q: Who wins in this	cas	se?									
A:											
Q: What's the winning	ng	strate	egy ir	n th	is ca	ase?					
A:											_
Q: What's the next s	sim	plest	case?)							
A: $N = 5$.											
Q: Who wins in this	cas	se?									
A:											
Q: What's the winning	ng :	strate	egy ir	n th	is ca	ase?					
A:											-
Q: What's the next s	sim	plest	case	,							
A: $N = 6.$											
Q: Who wins in this	cas	se?									
A:											
Q: What's the winning	~		~ ~			ase?					
A:											-
$\mathbf{A:} \ N = 7.$											
Q: Who wins in this A:											
Q: What's the winning			— .	. +h							
			000 10			100/					

QUESTION What patterns do we notice? Class 3

Three Cases To Analyze Case 1: N = 4, 7, 10, 13, 16, 19, ... = 3k + 1

Case 2: $N = 5, 8, 11, 14, 17, 20, \ldots = 3k + 2$

Case 3: $N = 6, 9, 12, 15, 18, 21, \ldots = 3k + 3$

Equivalent Numbers

The fact that in our analysis of Poison we found out that games that had 3k + 1 pills, 3k + 2 pills and 3k + 3 pills were all the same, or that

$$4 \equiv 7 \equiv 10 \equiv 13 \equiv 16 \equiv 19 \dots$$

is an example of modular arithmetic.

We would say mathematically that $7 \equiv 1 \pmod{3}$.

Similarly, we can say that $14 \equiv 2 \pmod{3}$ and $18 \equiv 3 \pmod{3}$

DEFINITION: modular arithmetic

Given two positive integers a and b, they are said to be **congruent modulo n** if the difference between a and b is an integer multiple of n, or in other words n evenly divides a - b. The number n is known as the **modulus** of the congruence. The notation we use is

$$a = b \mod n$$

When we say "two numbers are **congruent** modulo 3" we know that the difference of the two numbers must be a multiple of 3. Thus we know that in modulo 3 instead of counting $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \ldots$ we count $0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, \ldots$ [DEFINITION: residue]

The modulo-*n* residue of *a* is *b* when $a \equiv b \pmod{n}$ and we know that $0 \leq b < n$.

We say that there are three **residue classes** modulo 3. In general, if your modulus is n there are n residues classes ranging from 0 to n - 1. These are the numbers 0, 1, 2, 3, 4, 5, $\dots, n - 1$.

Examples of Modular Arithmetic

The most common example of modular arithmetic involves clocks and time. There are 60 seconds in a minute and 60 minutes in a hour, so the modulus is 60. We tell time in 12 hour shifts so the modulus is 12 in hours.

7 hours past 6 o'clock is not 13 o'clock, it is 1 o'clock (i.e. 13 - 12 =1) $13 \equiv 1 \pmod{12}$ or $7 + 6 \equiv 1 \pmod{12}$

20 minutes after one-quarter before the hour is the same thing as 5 after the hour $45 + 20 \equiv 5 \pmod{60}$

Math As A Liberal Art

 EXERCISE

 Try to evaluate the following using modular arithmetic

1. $6 + 8 \equiv \mod 3$

2. $___ \equiv 1 \pmod{3}$

3. $___ \equiv 4 \pmod{7}$

4. $9+6 \equiv \mod{5}$

5. $9+6 \equiv \mod 4$

Class 3

Modular Arithmetic Rules

Addition Using Modular Arithmetic

Given that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then it is true that $a + c \equiv (b + d) \pmod{n}$

Subtraction Using Modular Arithmetic

Given that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then it is true that $a - c \equiv (b - d) \pmod{n}$

Multiplication Using Modular Arithmetic

Given that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then it is true that $ac \equiv bd \pmod{n}$

Exponentiation Using Modular Arithmetic

Given that $a \equiv b \pmod{n}$ and p is a positive integer then it is true that $a^p \equiv b^p \pmod{n}$

GROUPWORK

Come up with your own examples of problems that correspond to each of the four cases of Addition, Subtraction, Multiplication and Exponentiation using Modular Arithmetic.

1. ADDITION (let n = 3)

2. SUBTRACTION (let n = 4)

3. MULTIPLICATION (let n = 9)

4. EXPONENTIATION (let n = 5)

Math As A Liberal Art

EXAMPLE

Let's use modular arithmetic for find the last two digits (i.e. the tens and units digits) of 7^{1942} (HINT: The modulus we need to use is 100!)

What are the residue classes of $7^k \pmod{100}$?

What can we simplify the expression $7^{4k} \pmod{100}$ as?

Can we write 1942 as 4k + j where k and j are integers and j is 0, 1, 2 or 3? Do it!

So, what are the last two digits of 7^{1942} ?