Theorems about Prime Numbers

1. There are an infinite number of primes.
2. If a prime p divides a product $m n$ then p divides at least one of m or n.
3. (Fundamental Theorem of Arithmetic)

Every natural number is prime or can be expressed as a product of primes that is unique apart from the order in which the product is written.
4. (Hadamand/Poussin) The Prime Number Theorem

Considering that $\pi(N)$ is the prime density function, the proportion of the first N natural numbers which are prime numbers behaves like

$$
\frac{\pi(N)}{N} \rightarrow \frac{1}{\log N} \text { as } N \rightarrow \infty
$$

5. (Chebychef) There is always a prime number between N and $2 N$.
6. (Fermat's Little Theorem) If a is a whole number and p is a prime that does not divide a, then $a^{p-1} \equiv 1(\bmod p)$
7. A number of the form $M_{n}=2^{n}-1$ is called a Mersenne prime. We know that M_{n} prime $\Longrightarrow n$ is prime. The converse is not true. (In other words, it is not true that if n is prime then $M_{n}=2^{n}-1$ is prime.)

Conjectures about Prime Numbers

1. Goldbach Conjecture: Every even integer greater than 2 is the sum of two primes.
2. Twin Primes Conjecture: There are an infinite number of twin primes.
3. Mersenne Primes Conjecture: There are an infinite number of Mersenne primes.

Fermat's Last Theorem (Proved by Andrew Wiles in 1993-94)

$$
x^{n}+y^{n}=z^{n}
$$

has no solutions for $n>2$!

