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sents any one of a set of numbers; if two variables x and y are so related that
whenever a value is assigned to x there is automatically assigned, by some rule.
or correspondence, a value to y, then we say y is a (single-valued) function of x.
The variable x, to which values are assigned at will, is called the independent -
variable, and the variable y, whose values depend upon those of x, is called the -
dependent variable. The permissible values that x may assume constltute the -
domain of definition of the function, and the values taken on by y constltute the ‘
range of values of the function.

The student of mathematics used to meet the Dirichlet definition of func-
tion in his introductory course in calculus. The definition is a very broad one . -
and does not imply anything regarding the possibility of expressing the relation- ~
ship between x and y by some kind of analytic expression; it stresses the basic.
idea of a relationship between two sets of numbers.

Set theory has extended the concept of function to embrace relat10nsh1ps PR
between any two sets of elements, be the elements numbers or anything else.
" Thus, in set theory, a function f is defined to be any set of ordered pairs-of
elements such that if (a;,b,) € f, (a2,b,) € f, and a; = a,, then b; = b,. The set
A of all first elements of the ordered pairs is called the domain (of definition) of
the function, and the set B of all second elements of the ordered pairs is called
the range (of values) of the function. A functional relationship is thus nothing
but a special kind of subset of the Cartesian product set A X B. A one-to-one
correspondence is, in its turn, a special kind of function, namely, a function f~
such that if (a; ,b;) € f, (a2,b;) € f, and by = b,, then a; = a,. If, for afunct10na1
relationship f, (a,b) € f, we write b = f(a). S

The notion of function pervades much of mathematics, and since the e;arly 3
part of the present century, various influential mathematicians have advocated .
the employment of this concept as the unifying and central principle in the
organization of elementary mathematics courses. The concept seems to forma - -
natural and effective guide for the selection and development of textual mate-
rial. There is no doubt of the value of a mathematics student’s early acquam-' :
tance with the function concept.

15-4 Transfinite Numbers

The modern mathematical theory of sets is one of the most remarkable crea-
tions of the human mind. Because of the unusual boldness of some of the ideas
found in its study, and because of some of the singular methods of proof to
which it has given rise, the theory of sets is indescribably fascinating. Above
this, the theory has assumed tremendous importance for almost the whole of
mathematics. It has enormously enriched, clarified, extended, and generalized
many domains of mathematics, and its role in the study of the foundations in
mathematics is very basic. It also forms one of the connecting links between
mathematics on the one hand and philosophy and logic on the other.

Two sets are said to be equivalent if and only if they can be placed in one-,
to-one correspondence. Two sets that are equivalent are said to have the same.
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cardinal number. The cardinal numbers of finite sets may be identified with the
natural numbers. The cardinal numbers of infinite sets are known as transfinite
numbers, and their theory was first developed by Georg Cantor in a remarkable
series of articles beginning in 1874, and published, for the most part, in the
German mathematics journals Mathematische Annalen and Journal fiir Mathe-
matik. Prior to Cantor’s study mathematicians accepted only one infinity, de-
noted by some symbol like », and this symbol was employed indiscriminately
to indicate the ‘‘number’’ of elements in such sets as the set of all natural
numbers and the set of all real numbers. With Cantor’s work, a whole new
outlook was introduced, and a scale and arithmetic of infinities was achieved.

The basic principle that equivalent sets are to bear the same cardinal
number presents us with many interesting and intriguing situations when the
sets under consideration are infinite sets. Galileo Galilei observed as early as
the latter part of the sixteenth century that, by the correspondence n <> 2n, the
set of all positive integers can be placed in one-to-one correspondence with the
set of all even positive integers. Hence, the same cardinal number should be
assigned to each of these sets, and, from this point of view, we must say that
there are as many even positive integers as there are positive integers in all. Itis
observed at once that the Euclidean postulate that states that the whole is
greater than a part cannot be tolerated when cardinal numbers of infinite sets

_are under consideration. In fact, Dedekind, in about 1888, actually defined an
infinite set to be one that is equivalent to some proper subset of itself.

We shall designate the cardinal number of the set of all natural numbers by
d and describe any set having this cardinal number as being denumerable.’ It
follows that a set S is denumerable if and only if its elements can be written as
an unending sequence {s1, 52, 53, - - . Since it is easily shown that any infinite
set contains a denumerable subset, it follows that d is the ‘‘smallest’ transfinite
number.

Cantor, in one of his earliest papers on set theory, proved the denumerabil-
ity of two important sets that scarcely seem at first glance to possess this
property.

The first set is the set of all rational numbers. This set has the important
property of being dense. By this is meant that between any two distinct rational
numbers there exists another rational number—in fact, infinitely many other
rational numbers. For example, between 0 and 1 lie the rational numbers

172, 2/3, 3/4, 4/5, 5/6, . . . ,nfn+ 1), ...
between 0 and 1/2 lie the rational numbers '

13, 205, 317, 49, /11, . . ., ni@n + 1), ..

3 Cantor designated the cardinal number by the Hebrew letter aleph with the subscript zero,
that is, by No.
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between 0 and 1/4 lie the rational numbers
1/5, 2/9, 3/13, 4/17, 521, ...,n@An+ 1), ...

and so on. Because of this property, one might well expect the transfinite
number of the set of all rational numbers to be greater than d.* Cantor showed
that this is not the case, and that, on the contrary, the set of all rational
numbers is denumerable. His proof is interesting and runs as follows.

THEOREM 1: The set of all rational numbers is denumerable.
Consider the array

11— 2 3 —4

J /7
112 212 3/2 412
Vo S
1/3 213 3/3 4/3
/

114 214 314 4l4

?

in which the first row contains, in order of magnitude, all the natural numbers
(that is, all positive fractions with denominator 1), the second row contains, in
order of magnitude, all the positive fractions with denominator 2, the third row
contains, in order of magnitude, all the positive fractions with denominator 3,
etc. Obviously, every positive rational number appears in this array, and if we
list the numbers in the order of succession indicated by the arrows, omitting
numbers that have already appeared, we obtain an unending sequence

1,2,1/2,1/3,3,4,3/2,23, 1/4, . ..

in which each positive rational number appears once and only once. Denote
this sequence by {ri, r2, 3, - - .. Then the sequence {0, =r1, 11, =125 12, o
contains the set of all rational numbers, and the denumerability of this set is
established. '

The second set considered by Cantor is a seemingly much more extensive
set of numbers than the set of rational numbers. We first make the following
definition. : o "

_ VDEFINITION 1: A complex number is said to be algebraic if it is a oot of
some polynomial S '

fx) = apx™ + apx" '+ -+ ap1X Tt an,

4 The cardinal number of a set A is said to be greater than the cardinal number of a set B if anl
only if B is equivalent to a proper subset of A, but A is equivalent to no proper subset of B.
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where ao # 0 and all the ay.s are integers. A complex number that is not
algebraic is said to be transcendental.

It is quite clear that the algebraic numbers include, among others, all
rational numbers and all roots of such numbers. Accordingly, the following
theorem is somewhat astonishing:

THEOREM 2: The set of all algebraic numbers is denumerable.
Let f(x) be a polynomial of the kind described in Definition 1, where,
without loss of generality, we may suppose a, > 0. Consider the so-called

height of the polynomial, defined by
h=n+ao+ |a| +la +- -+ |@p-1| + [Gnl-

Obviously % is an integer = 1, and there are plainly only a finite number of -
polynomials of a given height &, and therefore only a finite number of algebraic
numbers arising from polynomials of a given height h. We may now list (theo-
retically speaking) all the algebraic numbers, refraining from repeating any
number already listed, by first taking those arising from polynomials of height
1, then those arising from polynomials of height 2, then those arising from
polynomials of height 3, and so on. We thus see that the set of all algebraic
numbers can be listed in an unending sequence, whence the set is denumerable.

In view of the preceding two theorems, there remains the possibility that
all infinite sets are denumerable. That this is not so was shown by Cantor in a
striking proof of the following significant theorem:

THEOREM 3: The set of all real numbers in the interval 0 < x < 1is
nondenumerable. '

The proof is indirect and employs an unusual method known as the Cantor
diagonal process. Let us, then, assume the set to be denumerable. Then we may
list the numbers of the set in a sequence {pi, P2, D3> - - J}. Each of these
numbers p; can be written uniquely as a nonterminating decimal fraction; in this
connection, it is useful to recall that every rational number may be written as a
“‘repeating decima >>. 3 number such as 0.3, for example, can be written as
0.29999. . . . We can then display the sequence in the following array,

D1 = 0.ap1anpas - ° -
D2 = 0.ay1a200a23 ° * -

p3y = 0.a31aa33 * -

where each symbol a;; represents some one of the digits 0, 1,2, 3, 4, 5,6,7,8,9.
Now, in spite of any care that has been taken to list all the real numbers
between 0 and 1, there is a number that could not have been listed. Such a
number is 0.b1b2bs . . ., where, say, by = 7 if au + 7and b, = 3if aw =7, for
k=1,2,3,...,0, ... This number clearly lies between 0 and 1, and it must
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differ from each number pi, for it differs from p; in at least the first decimal
place, from p; in at least the second decimal place, from p; in at least the third
decimal place, and so om. Thus, the original assumption that all the real num-
bers between 0 and 1 can be listed in a sequence 18 untenable, and the set must
therefore be nondenumerable.

Cantor deduced the following remarkable consequence of Theorems 2
and 3: ,

THEOREM 4: Transcendental numbers exist. :

Since, by Theorem 3, the set of all real numbers between 0 and 1 is
nondenumérable, it is easily demonstrated that the set of all complex numbers
is also nondenumerable. By Theorem 2, however, the set of all algebraic num-
bers is denumerable. It follows that there must exist complex numbers that are
not algebraic, and the theorem is established.

Not all mathematicians are willing to accept the above proof of Theorem 4.
The acceptability or nonacceptability of the proof hinges on what one believes
mathematical existence to be, and there are some mathematicians who feel that
mathematical existence is established only when one of the objects whose
existence is in question is actually constructed and exhibited. Now the above
proof does not establish the existence of transcendental numbers by producing
a specific example of such a number. There are many existence proofs in
mathematics of this nonconstructive sort, where existence is presumably estab-
lished by merely showing that the assumption of nonexistence leads to a con-
tradiction. Most proofs of the Fundamental Theorem of Algebra, for example,
are formulated along such lines.

Because of the dissatisfaction of some mathematicians with nonconstruc-
tive existence proofs, a good deal of effort has been made to replace such
proofs by those that actually yield one of the objects concerned.

The proof of the existence of transcendental numbers and the proof that
some particular number is transcendental are two quite different matters, the
latter often being a very difficult problem. It was Hermite who, in 1873, proved
that the number e, the base for natural logarithms, is transcendental, and Lin-
demann, in 1882, who first established the transcendentality of the number .
Unfortunately, it is inconvenient for us to prove these interesting facts here.
The difficulty of identifying a particular given number as algebraic or transcen-
dental is illustrated by the fact that it is not yet known whether the number 77 is
algebraic or transcendental. A recent gain along these lines was the establish-
ment of the transcendental character of any number of the form at, where ais
an algebraic number different from 0 or 1, and b is any irrational algebraic
number. This result, achieved in 1934 by Alexsander Osipovich Gelfond (1906~
1968), and now known as Gelfond’s theorem, was a culmination of an almost
thirty-year effort to prove that the so-called Hilbert number, 2V2 s transcen-
dental. -

Since the set of all real numbers in the interval 0 < x < 11s nondenumera-

ble, the transfinite number of this set is greater than d. We shall denote it by Cy
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and shall refer to it as the cardinal number of the continuum. It is generally
believed that c is the next transfinite number after d—that is, that there is no set
having a cardinal number greater than d but less than c. This belief is known as
the continuum hypothesis, but, in spite of strenuous efforts, no proof has been
found to establish it. Many consequences of the hypothesis have been deduced.
In about 1940, the Austrian logician Kurt Godel (1906-1978) succeeded in
showing that the continuum hypothesis is consistent with a famous postulate
set of set theory provided these postulates themselves are consistent. Godel
conjectured that the denial of the continuum hypothesis is also consistent with
the postulates of set theory. This conjecture was established, in 1963, by Paul J.
Cohen (born 1934) of Stanford University, thus proving that the continuum
hypothesis is independent of the postulates of set theory, and hence can never
be deduced from those postulates. The situation is analogous to that of the
parallel postulate in Euclidean geometry.

It has been shown that the set of all single-valued functions f(x) defined
over the interval 0 < x < 1 has a cardinal number greater than c, but whether
this cardinal number is the next after ¢ is not known. Cantor’s theory provides
for an infinite sequence of transfinite numbers, and there are demonstrations
that purport to show that an unlimited number of cardinal numbers greater than
that of the continuum actually exist.

15-5 Topology

Topology started as a branch of geometry, but during the second quarter of the
twentieth century it underwent such generalization and became involved with
so many other branches of mathematics that it is now perhaps more properly
considered, along with geometry, algebra, and analysis, as a fundamental divi-
sion of mathematics. Today, topology may be roughly defined as the mathemat-
ical study of continuity. In this section we shall restrict ourselves to some of
those aspects of the subject that reflect its geometric origin. From this point of
view, topology may be regarded as the study of those properties of geometric
figures that remain invariant under so-called topological transformations; that
is, under single-valued continuous mappings possessing single-valued continu-
ous inverses. By a geometric figure, we mean a point set in three-dimensional
(or higher-dimensional) space; a single-valued continuous mapping is one that,
given a Cartesian coordinate system in the space, can be represented by single-
valued continuous functions of the coordinates.

Since the set of all topological transformations of a geometric figure consti-
tute a transformation group, topology can, from our viewpoint, be considered
as a Kleinian geometry, and hence codified within Klein’s Erlanger Programm.
Those properties of a geometric figure that remain invariant under topological
transformations of the figure are called topological properties of the figure, and
two figures that can be topologically transformed into one another are said to be
homeomorphic, or topologically equivalent.

The mapping functions of a topological transformation need not be defined
over the whole of the space in which the geometric figure is imbedded, but may



