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Symmetry Groups

The mathematical study of symmetry is carried out
by looking at transformations of objects. To the math-

ematician, a transformation is a special kind of func-
tion. Examples of transformations are rotations,
translations, reflections, stretchings, ot shrinkings
of an object. A symmetry of some figure is a trans-
formation that leaves the figure invariant, in the
sense that, taken as a whole, it looks the same after
the transformation as it did before, although indi-
vidual points of the figure may be moved by the
transformation.

An obvious example of a symmetrical figute is
the circle. The transformations that leave the circle
invariant are rotations about the center (through any
angle, in either direction), reflections in any diam-
eter, or any finite combination of rotations and re-
flections. Of course, a point marked on the circum-
ference may well end up at a different location: a
marked circle may possess symmetry neither for ro-
tation nor for reflection. But the circle itself, ig-
noring any marks, does have such symmetry.

The sixfold symmetry of the snowflake. If you rotate a
snowflake by any multiple of 60° (one sixth of a complete
rotation), it always will look the same.

_Given any figure, the symmetry group of that fig-
ure is the collection of all transformations that leave
that figure invariant. A transformation in the sym-
metry group leaves the figure looking exactly the
same, in shape, position, and orientation, as it did
before. _

The symmetry group of the circle consists of all
possible combinations of rotations about the center
(through any angle, in either direction) and reflec-
tions in any diameter. Invariance of the circle under
rotations about the center is referred to as rotational
symmetry; invariance with respect to reflection in a
diameter is called reflectional symmetry. Both kinds
of symmetry are recognizable by sight.

If $ and T are any two transformations in the
circle’s symmetry group, then the result of apply-
ing first § and then T is also a member of the sym-
metry group—since both § and T leave the circle
invariant, so does the combined application of both
transformations. It is common to denote this dou-
ble transformation by T © S. (There is a good rea-
son for the rather perverse looking order here, hav-
ing to do with an abstract pattern that connects
groups and functions, but I shall not go into that
connection here.)

This method of combining two transformations
to give a third is reminiscent of addition and mul-
tiplication, which combine any pair of integers to
give a third. To the mathematician, ever on the look-
out for patterns and structure, it is natural to see
what kind of properties are exhibited by this oper-
ation of combining two transformations in the cir-
cle’s symmetry group to give a third.

- First, the operation is associative: if S, T, W are
transformations in the symmetry group, then

Soryow=8§o(ToWw).

1In this tespect, this new operation is very much like

__addition and multiplication of integers.

Second, the combination operation has an iden-
tity element that leaves unchanged any transforma-
tion it is combined with: the ‘null rotation’, the ro-
tation through angle 0. The null rotation, call it I,
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can be applied along with any other transformation
T, to yield

TolI=I0oT=T.

The rotation I obviously plays the same role here as
the integer 0 does in addition and the integer 1 in
multiplication.

Thitd, every transformation has an inverse: if T
is any transformation, there is another transforma-
tion § such that

ToS=8§oT=1L

The inverse of a rotation is a rotation through the
same angle in the opposite direction. The inverse of
any reflection is that very same reflection. To obtain
the inverse for any finite combination of rotations
and reflections, you take the combination of back-
ward rotations and re-reflections that exactly undoes
its effect: start with the last one, undo it, then undo
the previous one, then its predecessor, and so on.

The existence of inverses is a property shared
with addition for integers: for every integer 7 there
is an integer # such that

m + n=mn+ m = 0 (the identity for addition),

namely # = —m. The same is not true for multi-
plication of integers, of course: it is not the case that
for every integer m there is an integer 7 such that

m X n=mnXm=1 (the identity for
' multiplication).

In fact, only for the integers = 1 and m = —1 s
there another integer 7 that satisfies the above equa-
tion. ) ‘

To summarize, any two symmetry transforma-
tions of a circle can be combined by the combina-
tion operation to give a third symmetry transfor-
mation, and this operation has the three ‘arithmetic’
propetties associativity, identity, and inverses.

A similar analysis can be carried out for other
symmetrical figures. In fact, the properties of sym-
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metry transformations we have just observed in the
case of the circle turn out to be sufficiently com-
mon in mathematics to be given a name—indeed,
I have already used that name in referring to th@
‘symmetry group’. In general, whenever mathemati-
cians have some set, G, of entities and an operation
« that combines any two elements x and y in G to
give a further element x * y in G, they call this col-
lection a group if the following three conditions aré
met:

Gl. forall x, y, zin G,

(x*y)*z=x*(y*z);

there is an element ¢ in G such that
x ¥ e=¢*x =x, for all x in G;

G2.

for each element x in G there is an
element y in G such that x * y =
y * x = ¢, where ¢ is as in condition G2.

G3.

Thus, the collection of all symmetry transformations
of a circle is a group. In fact, you should have 00
difficulty in convincing yourself that if G is the col-
lection of all symmetry transformations of any fig-
ure, and * is the operation of combining two sym-
metry transformations, then the result is a group-

From the remarks made eatlier, it should also
be clear that if G is the set of integers and the op-
eration * is addition, then the resulting structuf€ 18
a group. The same is not true for the integers and
multiplication, however. But if G is the set of a‘l
rational numbers apart from zero, and * is multipli-
cation, then the result is a group.

A different example of a group is provided by
the finite arithmetics discussed in Chaptet 1. The
integers 0, 1,...,n — 1 with the operation of ad-
dition modulo 7 is a group for any integer #. And
if » is a prime number, then the integers 1,2,..>
n — 1 constitute a group under the operation of mul-
tiplication modulo 7.

In fact, the three kinds of examples just de-
scribed barely scratch the surface. The group con-
cept turns out to be ubiquitous in modern mathe-
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element of your group has a single inverse. In fact,
you will know that your newly discovered structure
possesses every property that can be established—
in abstract form—on the basis of the group axioms
alone.

The more examples there are of a given abstract
structure, such as a group, the more widespread the
applications of any theorems proved about that ab-
stract structure. The cost of this greatly increased
efficiency is that one has to learn to work with
highly abstract structures, with abstract patterns of
abstract entities. In group theory, it does not mat-
ter, for the most part, whar the elements of a group
are, ot what the group operation is. Their nature
plays no role. The elements could be numbers, trans-
formations, or other kinds of entities, and the oper-
ation could be addition, multiplication, composi-
tion of transformations, or whatever. All that
matters is that the objects together with the oper-
ation satisfy the group axioms G1, G2, and G3.

One final remark concerning the group axioms
is in order. In both G2 and G3, the combinations
were written two ways. Anyone familiar with the
commutative laws of arithmetic might well ask why
the axioms were written this way. Why don’t math-
ematician simply write them one way, say

X *e=x

in G2 and

xX*ky=¢

in G3, and add one further axiom, the commuta-
tive law: '

G4. forall x, yin G, x * y = y % x.

The answer is that this additional requirement
would exclude many of the examples of groups that
mathematicians wish to consider.

Though many other symmetry groups do not
satisfy the commutativity condition G4, a great
many other kinds of groups do. Consequently,

| groups that satisfy the additional condition G4 are

given a special name: they are called abelian groups,
after the Norwegian mathematician Niels Henrik
Abel. The study of abelian groups constitutes an im-
portant subfield of group theory.

For a further example of a symmetry group, con-
sider the equilateral triangle shown on this page.
This figure has precisely six symmetries. There is
the identity transformation, I, counterclockwise ro-
tations v and w through 120° and 240°, and reflec-
tions x, 9, z in the lines X, Y, Z, respectively. (The
lines X, Y, Z stay fixed as the triangle moves.) There
is no need to list any clockwise rotations, since a
clockwise rotation of 120° is equivalent to a coun-
terclockwise rotation of 240° and a clockwise rota-
tion of 240° has the same effect as a counterclock-
wise rotation of 120°. :

There is also no need to include any combina-
tions of these six transformations, since the result of
any such combination is equivalent to one of the six
given. The table on the next page gives the basic
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The symmetries of an equilateral triangle.
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matics, both pure and applied. Indeed, the notion
of a group was first formulated, in the early nine-
teenth centuty, not in connection with arithmetic
or with symmetry transformations, but as part of an
investigation of polynomial equations in algebra.
The key ideas may be found in the work of Evariste
Galois, described later in this chapter.

The symmetry group of a figure is a mathe-
matical structure that in some sense captures the de-
gree of visual symmetry of that figure. In the case
of a circle, the symmetry group is infinite, since
there are infinitely many possible angles through
which a circle may be rotated and infinitely many
possible diameters in which it may be reflected. It
is the richness of the circle’s group of symmetry
transformations that corresponds to the high degree
of visual symmetry—the ‘perfect symmetry’'—that
we observe when we look at a circle.

At the other end of the spectrum, a figure that
is completely unsymmetric will have a symmetry
group that consists only of a single transformation,
the identity (or ‘do nothing’) transformation. It is
easy to check that this special case does satisfy the
requirements of a group, as does the single integer’
0 with the operation of addition.

Before looking at a further example of a group,
it is worth spending a few moments reflecting on
the three conditions G1, G2, and G3 that deter-
mine whether a given collection of entities and an
operation constitute a group of not.

The first condition, G1, the associativity con-
dition, is already very familiar to us in the case of
the arithmetic operations of addition and multipli-
cation (though not subtraction or division).

Condition G2 asserts the existence of an iden-
tity element. Such an element has to be unique. For
if ¢ and 7 both have the property expressed by G2,
then, applying this property twice in succession, you
would have ~ '

e=exi=1,

so e and 7 are in fact one and the same.

This last observation means that there is only
one element e that can figure in condition G3. More-
over, for any given element x in G, there is only one
element y in G that satisfies the requirement im-
posed by G3. This is also quite easy to demonstrate.
Suppose y and z are both related to x as in G3. That
is, suppose that:

(L X%y =Y xXTE
2) xkz=zZ%xx=e¢
Then:
y=yxe (by the property of e)

=y % (x % z) (by equation (2))
=@y *x)*z (byGl)

=%z (by equation (1))

=z (by the property of e),

so in fact y and z are one and the same. Since there
is precisely one y in G related to a given x as in G3,
that y may be given a name: it is called the (group)
inverse of x, and is often denoted by x 1. And with
that, I have just proved a theorem in the mathe-
matical subject known as group theory: the theo-
rem that says that, in any group, every element has
a unique inverse. I proved that uniqueness by de-
ducing it logically from the group axioms, the three
initial conditions G1, G2, G3. ,
Though this particular theotem is an extremely
simple one, both to state and to prove, it does il-
lustrate the enormous power of abstraction in math-
ematics. There are many, many examples of groups
in mathematics; in writing down the group axioms,
mathematicians are capturing a highly abstract pat-
tern that arises in many instances. Having proved,
using only the group axioms, that group inverses are
unique, this fact will apply to every single example
of a group. No further work is required. If tomor-
fow you come across a quite new kind of mathe-
matical structure, and you determine that what you
have is a group, you will know at once that every
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The Triangle Symmetry Group

Q I v w x y Z
I I v w x y b4
v v w I Z x y
w w I v y Z x
% x y z I v w
g y z X w I v
2 Z x Y % w I

cransformation that results from applying any two
basic transformations. To read off the value of the
combination x © v from the table, look along the
cow labeled x and locate the entry in the column la-
beled », namely y. Thus,

X0V =Y

in this group. Again, the result of applying first w
and then X, namely the group element x O %, is z,
and the result of applying v twice in succession,
namely v O 7, is w. The group table also shows that
p and w are mutual inverses and x, ¥, z are each self-
inverse.

Since the combination of any two of the given
six transformations is another such transformation,
it follows that the same is true for any finite com-
bination. You simply apply the pairing rule succes-
sively. For example, the combination (w O x) Oy 18
equivalent to y O y, which in turn is equivalent to I.

Evariste Galois

It is to a brilliant young Frenchman by the name of
Evariste Galois that the world owes its gratitude for
the introduction of the group concept. Killed in a

duel on 30 May, 1832, at the age of 21, Galois him-

self never lived to see the mathematical revolution

ushered in by his work. In fact, an entire decade was
to go by before the true magnitude of his accom-
plishment was recognized.

Galois was led to formulate the notion of a
group by his attempt to solve a specific problem:
that of finding simple, algebraic formulas for the so-
Jution of polynomial equations. Every high-school
student is familiar with the formula for the solution
of a quadratic equation. The roots of the quadratic
equation '

ax?2 +bx+c=0

are given by the formula

—b = Vb — dac

X___
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Evariste Galois (1811-1832).




