What s Mathematics?

" hat is mathematics? Ask this question of persons chosen
~at random, and you are likely to receive the answer
“Mathematics is the study of number.” With a bit of
prodding as to what kind of study they mean, you may be able to
induce them to come up with the description “the science of num-
bers.” But that is about as far as you will get. And with that you
will have obtained a description of mathematics that ceased to be
accurate some two and a half thousand years ago!

Given such a huge misconception, there is scarcely any wonder
that your randomly chosen persons are unlikely to realize that re-
search in mathematics is a thriving, worldwide activity, or to ac-
cept a suggestion that mathematics permeates, often to a consid-
erable extent, most walks of present-day life and society.

In fact, the answer to the question “What is mathematics?” has
changed several times during the course of history.

Up to 500 B.C. or thereabout, mathematics was indeed the study
of number. This was the period of Egyptian and Babylonian math-
ematics. In those civilizations, mathematics consisted almost solely
of arithmetic. It was largely utilitarian, and very much of a ‘cook-
book’ variety. (“Do such and such to a number and you will get the
answer.”)
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2 PROLOGUE

From 500 B.C. to 300 A.D. was the era of Greek
mathematics. The mathematicians of ancient Greece
were primarily concerned with geometry. Indeed,
they regarded numbers in a geometric fashion, as
measurements of length, and when they discovered
that there were lengths to which their numbers did
not correspond (the discovery of irrational lengths),
their study of number largely came to a halt. For
the Greeks, with their emphasis on geometry, math-
ematics was the study of number and shape.

In fact, it was only with the Greeks that math-
ematics came into being as an area of study, and
ceased being a collection of techniques for measur-
ing, counting, and accounting. Greek interest in
mathematics was not just utilitarian; they regarded
mathematics as an intellectual pursuit having both
aesthetic and religious elements. Thales introduced
the idea that the precisely stated assertions of math-
ematics could be logically proved by a formal argu-
ment. This innovation marked the birth of the the-
orem, now the bedrock of mathematics. For the
Greeks, this approach culminated in the publication
of Euclid’s Elements, the most widely circulated book
of all time after the Bible.

There was no major change in the overall na-
ture of mathematics until the middle of the seven-
teenth century, when Newton (in England) and
Leibniz (in Germany) independently invented the
calculus. In essence, the calculus is the study of mo-
tion and change. Previous mathematics had been
largely restricted to the static issues of counting,
measuring, and describing shape. With the intro-
duction of techniques to handle motion and change,
mathematicians were able to study the motion of
the planets and of falling bodies on earth, the work-
ings of machinery, the flow of liquids, the expan-
sion of gases, physical forces such as magnetism and
electricity, flight, the growth of plants and animals,
the spread of epidemics, the fluctuation of profits,
and so on. After Newton and Leibniz, mathematics
became the study of number, shape, motion, change,
and space.

Most of the initial work involving calculus was
directed toward the study of physics; indeed, many
of the great mathematicians of the period are also
regarded as physicists. But from about the middle
of the eighteenth century there was an increasing
interest in the mathematics itself, not just its ap-
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WHAT IS MATHEMATICS!? 3

plications, as mathematicians sought to understand
what lay behind the enormous power that the cal-
culus gave to humankind. By the end of the nine-
teenth century, mathematics had become the study
of number, shape, motion, change, and space, and of
the mathematical tools that are used in this study.

The explosion of mathematical activity that has
taken place in the present century has been dramatic.
In the year 1900, all the world’s mathematical knowl-
edge would have fitted into about eighty books. To-
day it would take maybe 100,000 volumes to con-
tain all known mathematics. This extraordinary
growth has not only been a furtherance of previous
mathematics; many quite new branches of mathe-
matics have sprung up. At the turn of the century,
mathematics could reasonably be regarded as con-
sisting of some twelve distinct subjects: arithmetic,
* geometry, calculus, and so on. Today, between sixty
and seventy distinct categories would be a reasonable
figure. Some subjects, like algebra or topology, have
split into various subfields; others, such as complex-
ity theory or dynamical systems theory, are com-
pletely new areas of study.

Given this tremendous growth in mathematical
activity, for a while it seemed as though the only
simple answer to the question “What is mathemat-
ics?” was to say, somewhat fatuously, “It is what
mathemarticians do for a living.” A particular study
was classified as mathematics not so much because
of what was studied but because of how it was stud-
ied—that is, the methodology used. It was only
within the last twenty yeats or so that a definition
of mathematics emerged on which most mathe-
maticians now agree: mathematics is tbe science of pat-
terns. What the mathematician does is examine ab-
stract ‘patterns—numerical patterns, patterns of
shape, patterns of motion, patterns of behavior, and
s0 on. Those patterns can be either real or imagined,
visual or mental, static or dynamic, qualitative or
quantitative, purely utilitarian ot of little more than
recreational interest. They can arise from the world
around us, from the depths of space and time, or
from the inner workings of the human mind.

To convey the modern conception of mathe-
matics, this book takes six general themes, covering

patterns of counting, patterns of reasoning and com-
municating, patterns of motion and change, pat-
terns of shape, patterns of symmetry and regularity,
and patterns of position (topology).

One aspect of modern mathematics that is obvi-
ous to even the casual observer is the use of abstract
notations: algebraic expressions, complicated-looking
formulas, and geometric diagrams. The mathemati-
cian’s reliance on abstract notation is a reflection of
the abstract nature of the patterns she studies.

Different aspects of reality require different
forms of description. For example, the most appro-
priate way to study the lay of the land or to describe
to someone how to find their way around a strange
town is to draw a map. Text is far less appropriate.
Analogously, line drawings in the form of blueprints
are the appropriate way to specify the construction
of a building. And musical notation is the most ap-
propriate medium to convey music, apart from, per-
haps, actually playing the piece.

In the case of various kinds of abstract, ‘formal’
patterns and abstract structures, the most appropri-
ate means of description and analysis is mathemat-
ics, using mathematical notations, concepts, and
procedures. For instance, the symbolic notation of
algebra is the most appropriate means of describing
and analyzing general behavioral properties of ad-
dition and multiplication.

For example, the commutative law for addition
could be written in English as:

When two numbers are added, their order is not
important.

However, it is usually written in the symbolic form
m+n=ntm

Such is the complexity and the degree of abstrac-
tion of the majority of mathematical patterns, that
to use anything other than symbolic notation would
be prohibitively cumbersome. And so the develop-
ment of mathematics has involved a steady increase
in the use of abstract notations.

But for all that mathematics books tend to be
awash with symbols, mathematical notation no



4 PROLOGUE

more 75 mathematics than musical notation s mu-
sic. A page of sheet music represents a piece of mu-
sic; the music itself is what you get when the notes
on the page are sung or performed on a musical in-
strument. It is in its performance that the music
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The first systematic use of a recognizably algebraic notation
in mathematics seems to have been made by Diophantus,
who lived in Alexandria some time around 250 A.D. His trea-
tise Arithmetic, of which only six of the original thirteen vol-
umes have been preserved, is generally regarded as the first
‘algebra textbook’. In particular, Diophantus used special
symbols to denote the unknown in an equation and to de-
note powers of the unknown, and he employed symbols for
subtraction and for equality. The photograph shows the title
page of a seventeenth-century Latin translation of Diophan-
tus’ classic text.

comes alive and becomes part of our experience; the
music exists not on the printed page but in our
minds. The same is true for mathematics; the sym-
bols on a page are just a representation of the math-
ematics. When read by a competent performer (in
this case, someone trained in mathematics), the sym-
bols on the printed page come alive—the mathe-
matics lives and breathes in the mind of the reader.

Given the strong similarity between mathe-
matics and music, both of which have their own
highly abstract notations and are governed by their
own structural rules, it is hardly surprising that
many (perhaps most) mathematicians also have some
musical talent. And yet, until recently, there was a
very obvious difference between mathematics and
music. Though only someone well trained in music
can read a musical score and hear the music in her
head, if that same piece of music is performed by a
competent musician, anyone with a sense of hear-
ing can appreciate the result. It requires no musi-
cal training to experience and enjoy music when it
is performed.

But for most of its history, the only way to ap-
preciate mathematics was to learn how to ‘sight-read’
the symbols. Though the structures and patterns of
mathematics reflect the structure of, and resonate in,
the human mind every bit as much as do the struc-
tures and patterns of music, human beings have de-
veloped no mathematical equivalent to a pair of ears.
Mathematics can only be ‘seen’ with the ‘eyes of the
mind’. It is as if we had no sense of hearing, so that
only someone able to sight-read music would be able
to appreciate its patterns and its harmonies.

The development of computer and video tech-
nologies has to some extent made mathematics ac-
cessible to the untrained. In the hands of a skilled
user, the computer can be used to ‘perform’ mathe-
matics, and the result can be displayed on the screen
in a visual form for all to see. Though only a rela-
tively small part of mathematics lends itself to such
visual ‘performance’, it is now possible to convey to
the layperson at least something of the beauty and
the harmony that the mathematician ‘sees’ and ex-
periences when she does mathematics.
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Like mathematics, music has an abstract notation, used to represent abstract structures.

Without its algebraic symbols, large parts of
mathematics simply would not exist. Indeed, the is-
sue is a deep one having to do with human cogni-
tive abilities. The recognition of abstract concepts
and the development of an appropriate language are
really two sides of the same coin.

The use of a symbol such as a letter, a word, or a
picture to denote an abstract entity goes hand in hand
with the recognition of that entity a5 a7 entiry. The
use of the numeral ‘7’ to denote the number 7 requires
that the number 7 be recognized as an entity; the use
of the letter ‘7’ to denote an arbitrary whole number
requires that the concept of ‘a whole number’ be rec-
ognized. Having the symbols makes it possible to
think about and manipulate the concept.

This linguistic aspect of mathematics is often
overlooked, especially in our modern culture, with its
emphasis on the procedural, computational aspects of
mathematics. Indeed, one often hears the complaint

that mathematics would be much easier if it weren't
for all that abstract notation, which is rather like say-
ing that Shakespeare would be much easier to un-
derstand if it were written in simpler language.

Sadly, the level of abstraction in mathematics,
and the consequent need for notations that can cope
with that abstraction, means that many, perhaps
most, parts of mathematics will remain forever hid-
den from the nonmathematician; and even the more
accessible parts—the parts described in books such
as this one—may be at best dimly perceived, with
much of their inner beauty locked away from view.
Still, that is no excuse for those of us who do seem
to have been blessed with an ability to appreciate
that inner beauty from trying to communicate to
others some sense of what it is we experience—some
sense of the simplicity, the precision, the purity, and
the elegance that give the patterns of mathematics
their very considerable aesthetic value.
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Mathematical Symphonies

14/ith the aid of modern computer graphics, the
mathematician of today can sometimes arrange a
‘performance’ of mathematics, in much the same
way that a musician can perform a piece of music.
In this way, the nonmathematician may catch a brief
glimpse of the structures that normally live only in
the mathematician’s mind. Sometimes, the use of
computer graphics can be of significant use to the
mathematician as well. The study of so-called com-
plex dynamical systems was begun in the 1920s by
the French mathematicians Pierre Fatou and Gas-
ton Julia, but it was not until the late 1970s and
early 1980s that the rapidly developing technology
of computer graphics enabled Benoit Mandelbrot
and other mathematicians to see some of the struc-
cures Fatou and Julia had been working with. The
strikingly beautiful pictures that emerged from this
study have since become something of an art form
in their own right. In honor of one of the two pi-
oneers of the subject, certain of these structures are
now called Julia sets.

The picture is a computer image of part of a
fascinating mathematical object discovered by
Mandelbrot, now named after him as the Mandel-
brot set. The Mandelbrot set 1s an example of a rich
class of objects known as fractals.

PROLOGUE

In his 1940 book A Mathematician's Apology, the
accomplished English mathematician G. H. Hardy
wrote:

The mathematician’s patterns, like the painter’s or
the poet’s, must be &eﬂutz'lez, the ideas, like the
colours or the words, must fit together in a harmo-
nious way. Beauty is the first test; there is no perma-
nent place in the world for ugly mathematics. . . . It
may be very hard to define mathematical beauty, but
that is just as true of beauty of any kind—we may
not know quite what we mean by a beautiful poem,
but that does not prevent us from recognising one
when we read it.

The beauty to which Hardy was referring is, in
many cases, a highly abstract, inner beauty, a beauty
of abstract form and logical structure, 2 beauty that
can be observed, and appreciated, only by those suf-
ficiently well trained in the discipline. It is a beauty
“cold and austere,” according to Bertrand Russell,
the famous English mathematician and philosophert,
who wrote, in his 1918 book Mysticism and Logic:

Mathematics, rightly viewed, possesses not only
truth, but supreme beauty—a beauty cold and aus-
tere, like that of sculpture, without appeal to any
part of our weaker nature, without the gorgeous
trappings of painting or music, yet sublimely pure,
and capable of a stern perfection such as only the
greatest art can show.

Mathematics, the science of patterns, is 2 way of
looking at the world, both the physical, biological,
and sociological world we inhabit, and the inner
world of our minds and thoughts. Mathematics’
greatest success has undoubtedly been in the physi-
cal domain, where the subject is rightly referred to
as both the queen and the servant of the (natural) sci-
ences. Yet, as an entirely human creation, the study
of mathematics is ultimately a study of humanity it-
self. For none of the entities that form the substrate
of mathematics exist in the physical world; the num-
bers, the points, the lines and planes, the surfaces, the
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The mathematician of today can sometimes make
use of computer graphics in order to help undet-
stand a particular mathematical pattern. The sur-
face shown in this picture was discovered by David
Hoffman and William Meeks IIT in 1983. It is an
example of a so-called (non self-intersecting, infi-
nite) minimal surface, the mathematical equivalent
of an infinite soap film. Real soap films stretched
across a frame always form a surface that occupies
the minimal possible area. The mathematician con-
siders abstract analogues that stretch out to infin-
ity. Such surfaces have been studied for over two
hundred years, but, until Hoffman and Meeks made
their discovery, only three such surfaces were
known. Today, as a result of using visualization
techniques, mathematicians have discovered many
such surfaces. :

Much of what is known about minimal surfaces
is established by more traditional mathematical
techniques, involving lots of algebra and calculus.
But, as Hoffman and Meeks showed, the computer
graphics can provide the mathematician with the
intuition needed to find the right combination of
those traditional techniques. A theoretical result by
the Brazilian mathematician Celso Costa, in 1983,
established the existence of a new infinite minimal
surface, but he had no idea what the new surface
might look like, or whether it would have the im-

geometric figures, the functions, and so forth are pure
abstractions that exist only in humanity’s collective
mind. The absolute certainty of 2 mathematical proof
and the indefinitely enduring nature of mathemati-
cal truth are reflections of the deep and fundamental
status of the mathematician’s patterns in both the hu-
man mind and the physical world.

In an age when the study of the heavens dom-
inated scientific thought, Galileo said, “The great
book of nature can be read only by those who know
the language in which it was written. And this lan-
guage 18 mathematics.” Striking a similar note ina
much later era, when the study of the inner work-

When to See [s to Understand

portant property of non self-intersection. Using 2
new computer graphics package developed by
James Hoffman (no relation), David Hoffman and
Meeks were able to obtain a picture of the strange
new surface. Close examination of the picture en-
abled them to understand the new surface suffi-
ciently well to develop 2 proof that it did not in-
cersect itself. They were also able to prove that there
were in fact infinitely many non self-intersecting,
infinite minimal surfaces.

ings of the atom had occupied the minds of many
scientists for a generation, the Cambridge physicist
John Polkinghorne wrote, in 1986, “Mathematics is
the abstract key which turns the lock of the physi-
cal universe.”

In today’s age, dominated by information, com-
munication, and computation, mathematics is find-
ing new locks to turn. As the science of abstract pat-
terns, there is scarcely any aspect of our lives that is
not affected, to a greater or lesser extent, by math-
ematics; for abstract patterns are the very essence of
thought, of communication, of computation, of so-
ciety, and of life itself.
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