Problem Set \#3
 (50 points)

Name:
Score \qquad /50

Work on the following problems to turn in Wednesday April 3. Please make sure your work is clear, neat, and organized. A reminder: You may discuss these problems with each other, but your write-up and your submission must represent your own work written independently of others.

1. Rates of Change. [24 points]

Use the idea of successively approximating the rate of change of a function at a given value using Leibniz' method where the slope is approximately equal to

$$
\frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}}
$$

with smaller and smaller " h " values to find the derivative of $f(x)=x^{3}$ at the following points. Use the " h " values $0.1,0.01$, and 0.001 before determining the exact value of the rate of change.

1(a) Approximate the derivative of $f(x)=x^{3}$ at $x=0$
Use $\mathrm{h}=0.1$

Use $\mathrm{h}=0.01$

Use $\mathrm{h}=0.001$

What do you believe the exact derivative of $f(x)$ at $x=0$ is?
$\mathrm{f}^{\prime}(0)=$ \qquad

1(b) Approximate the derivative of $f(x)=x^{3}$ at $x=1$
Use $\mathrm{h}=0.1$

Use $\mathrm{h}=0.01$

Use $\mathrm{h}=0.001$

What do you believe the exact derivative of $f(x)$ at $x=1$ is?
$f^{\prime}(1)=$ \qquad

1(c) It turns out that the exact derivative of $\mathrm{f}(\mathrm{x})=x^{3}$ is $\mathrm{f}^{\prime}(\mathrm{x})=3 x^{2}$. Use this formula for the derivative of x^{3} to find the derivative of $\mathrm{f}(\mathrm{x})=x^{3}$ at $\mathrm{x}=0$ and $x=1$ to confirm your work above

$$
x=0 \quad \mathrm{f}^{\prime}(0)=
$$

$$
x=1 \quad \mathrm{f}^{\prime}(1)=
$$

$$
x=\mathrm{a} \quad \mathrm{f}^{\prime}(\mathrm{a})=
$$

[Note that you are now generalizing this to finding the derivative at an arbitrary point " a."]

1(d) We now know the exact derivative of $\mathrm{f}(x)=x^{3}$ is $\mathrm{f}^{\prime}(\mathrm{x})=3 x^{2}$. Suppose there existed an operation called anti-differentiation. What is the anti-derivative of $3 x^{2}$?

2. Integration Using Area Under a Curve. [10 points]

Find the exact values of the following integrals using the idea of finding an area under a curve. Show your work.
a. $\quad \int_{0}(2 x) d x$
b. $\int_{0}^{2}(2 x) d x$
c. $\int_{0}^{\mathrm{a}}(2 x) d x$
[Note that you are now generalizing this to an arbitrary ending point "a."]
d. What is the antiderivative of $2 x$?
3. Approximating the Values of Integrals. [10 points]

Approximate the value of the following integral by splitting the interval into (a) 2 and then (b) 4 pieces and finding the area of rectangles that would overestimate the value of the integral.

3
$\int x^{2} d x$
1
a. Approximation using 2 rectangles
b. Approximation using 4 rectangles
c. In class we were told that the integral of x^{2} from a point to a second point was $x^{3} / 3$ evaluated at the top endpoint minus $x^{3} / 3$ evaluated at the bottom endpoint. Use this idea to calculate the exact value of the integral above.

4. Anti-differentiation is Integration! [6 points]

Think about the relationship between $x^{3} / 3$ and x^{2} and how these are used in this Problem Set. Explain in a few sentences (perhaps include equations) why we call finding integrals of functions "anti-differentiation." (This can be done based on something you might observe from your calculations above or based on information about certain derivatives that we discussed in class.)

