Problem Set #2 (50 points)

Name:

Work on the following problems to turn in **Wednesday**, **March 20**. Please make sure your work is clear, neat, and organized. A reminder: You may discuss these problems with each other, but your write-up and your submission must represent **your own work written up independently of others**.

1. Base 3 Addition Chart.

+	0	1	2	10	11	12	20	21
0								
1								
2								
10								
11								
12								
20								
21								

Describe any pattern(s) you see in this chart as a whole.

2. Some Arithmetic Problems in Base 5 and Base 7. Solve the following arithmetic problems twice, first in Base 5 and then again in Base 7. You do not need to show detailed work, but it may be helpful.

(a) BASE 5.		
34	213	22
+ 22	-144	<u>x 14</u>
five	five	five

(b) BASE 7.		
34	213	22
+ 22	-144	<u>x 14</u>
seven	seven	seven

- 3. **Propositional Logic and Venn Diagrams**. Construct Venn Diagrams for each of the following two statements; this will show that they are logically equivalent.
 - (a) Use truth tables to show these statements are equivalent

$$\mathbf{p}^{\mathsf{A}}(\neg \mathbf{q}) \qquad \neg ((\neg \mathbf{p}) \mathbf{v} \mathbf{q})$$

(b) Use Venn Diagrams to show these expressions are equivalent

 $P \cap \overline{Q}$

 $\overline{(\overline{P} \cup Q)}$

4. **Propositional Logic and Truth Tables**. Show that the following logical implications are <u>NOT</u> valid arguments by constructing the appropriate truth table and showing it does **not** give you a tautology.

(a) Fallacy of the inverse, i.e. "hypothetical denial"

 $((p \to q) \land \neg p) \to \neg q$

(b) Fallacy of the converse, i.e. "consequential affirmation"

 $((p \rightarrow q) \land q) \rightarrow p$

5. **Propositional Logic and English Sentences**. Pick two statements **p** and **q** that should make sense in a "If p, then q" logical conclusion, such as "IF I have a PhD in Mathematics" THEN "I **know how to add 3 digit numbers.**" Use your English sentence values for **p** and **q** and replicate the following syllogisms

(a) Fallacy of the inverse, i.e. "hypothetical denial" $((p \rightarrow q) \land \neg p) \rightarrow \neg q$

(b) Fallacy of the converse, i.e. "consequential affirmation" $((p \rightarrow q) \land q) \rightarrow p$

(c) Modus tollendo ponens or "Disjunctive syllogism" (($\mathbf{p} \mathbf{v} \mathbf{q}$) ^ $\neg \mathbf{p}$) $\rightarrow \mathbf{q}$