Problem Set \#2

(50 points)

Name: \qquad
Work on the following problems to turn in Wednesday, March 20. Please make sure your work is clear, neat, and organized. A reminder: You may discuss these problems with each other, but your write-up and your submission must represent your own work written up independently of others.

1. Base $\mathbf{3}$ Addition Chart.

+	0	1	2	10	11	12	20	21
0								
1								
2								
10								
11								
12								
20								
21								

Describe any pattern(s) you see in this chart as a whole.
2. Some Arithmetic Problems in Base 5 and Base 7. Solve the following arithmetic problems twice, first in Base 5 and then again in Base 7. You do not need to show detailed work, but it may be helpful.

(a) BASE 5.

34	213	22
+22		
$-\quad$ five	-144	$\underline{X_{\text {f } 14}}$

(b) BASE 7.

34	213	22
+22	-144	$\underline{\text { x } 14}$
$-\quad$ seven	$-\quad$ seven	

3. Propositional Logic and Venn Diagrams. Construct Venn Diagrams for each of the following two statements; this will show that they are logically equivalent.
(a) Use truth tables to show these statements are equivalent

$$
\mathbf{p}^{\wedge}(\neg \mathbf{q})
$$

$$
\neg((\neg \mathbf{p}) \vee \mathbf{q})
$$

(b) Use Venn Diagrams to show these expressions are equivalent
$\boldsymbol{P} \cap \overline{\boldsymbol{Q}}$

$$
\overline{(\overline{\boldsymbol{P}} \cup \boldsymbol{Q})}
$$

4. Propositional Logic and Truth Tables. Show that the following logical implications are NOT valid arguments by constructing the appropriate truth table and showing it does not give you a tautology.
(a) Fallacy of the inverse, i.e. "hypothetical denial"

$$
\left((\mathbf{p} \rightarrow \mathbf{q})^{\wedge} \neg \mathbf{p}\right) \rightarrow \neg \mathbf{q}
$$

(b) Fallacy of the converse, i.e. "consequential affirmation" $\left((\mathbf{p} \rightarrow \mathbf{q})^{\wedge} \mathbf{q}\right) \rightarrow \mathbf{p}$
5. Propositional Logic and English Sentences. Pick two statements pand \mathbf{q} that should make sense in a "If p, then q" logical conclusion, such as "IF I have a PhD in Mathematics" THEN "I know how to add 3 digit numbers." Use your English sentence values for \mathbf{p} and \mathbf{q} and replicate the following syllogisms
(a) Fallacy of the inverse, i.e. "hypothetical denial" $\left((\mathbf{p} \rightarrow \mathbf{q})^{\wedge} \neg \mathbf{p}\right) \rightarrow \neg \mathbf{q}$
(b) Fallacy of the converse, i.e. "consequential affirmation" $\left((\mathbf{p} \rightarrow \mathbf{q})^{\wedge} \mathbf{q}\right) \rightarrow \mathbf{p}$
(c) Modus tollendo ponens or "Disjunctive syllogism" $\left((\mathbf{p} \mathbf{v} \mathbf{q})^{\wedge} \neg \mathbf{p}\right) \rightarrow \mathbf{q}$

