The Poison Game
The Poison Game is a two-player game where there are N poison pills in front of the players. Each player can take 1 or 2 pills on their turn. The player whose turn it is when one pill is left has to take the poison pill and loses!

Let’s consider what happens as the number N varies from 1 to 10 and try to see if we can find a pattern in who wins the game, Player One or Player Two, and how it depends on the number N of pills in the pot and the strategies used by the player.

GROUPWORK
Play the Poison game with a varying number of pills and see if any patterns emerge.

Is there a winning strategy for either of the players?
Write down which player wins the poison game when \(N \) varies in the table below

<table>
<thead>
<tr>
<th>(N)</th>
<th>Number of pills</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>PATTERN 1</th>
<th>PATTERN 2</th>
<th>PATTERN 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winning Player</td>
<td></td>
</tr>
</tbody>
</table>

Analyzing The Poison Game

Q: What’s the simplest case?
A: \(N = 1 \).

Q: Who wins in this case?
A: ________________

Q: What’s the next simplest case?
A: \(N = 2 \).

Q: Who wins in this case?
A: ________________

Q: What’s the next simplest case?
A: \(N = 3 \).

Q: Who wins in this case?
A: ________________

Q: What’s the next simplest case?
A: \(N = 4 \).

Q: Who wins in this case?
A: Player 2 always wins!

Q: What’s the winning strategy in this case?
A: ________________________

Q: What’s the next simplest case?
A: \(N = 5 \).

Q: Who wins in this case?
A: Player 1 always wins!

Q: What’s the winning strategy in this case?
A: ________________________

Q: What’s the next simplest case?
A: \(N = 6 \).

Q: Who wins in this case?
A: Player 1 always wins!

Q: What’s the winning strategy in this case?
A: ________________________
Three Cases To Analyze
Case 1: \(N = 4, 7, 10, 13, 16, 19, \ldots = 3k + 1 \)
Case 2: \(N = 5, 8, 11, 14, 17, 20, \ldots = 3k + 2 \)
Case 3: \(N = 6, 9, 12, 15, 18, 21, \ldots = 3k + 3 \)

Equivalent Numbers
The fact that in our analysis of Poison we found out that games that had \(3k + 1 \) pills, \(3k + 2 \) pills and \(3k + 3 \) pills were all the same, or that

\[
4 \equiv 7 \equiv 10 \equiv 13 \equiv 16 \equiv 19 \ldots
\]

is an example of modular arithmetic.

We would say mathematically that \(7 \equiv 1 \pmod{3} \).

Similarly, we can say that \(14 \equiv 2 \pmod{3} \) and \(18 \equiv 3 \pmod{3} \)

DEFINITION: modular arithmetic

Given two positive integers \(a \) and \(b \), they are said to be congruent modulo \(n \) if the difference between \(a \) and \(b \) is an integer multiple of \(n \), or in other words \(n \) evenly divides \(a - b \). The number \(n \) is known as the **modulus** of the congruence. The notation we use is

\[
a = b \pmod{n}
\]

When we say “two numbers are congruent modulo 3” we know that the difference of the two numbers must be a multiple of 3. Thus we know that in modulo 3 instead of counting 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, … we count 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, …

DEFINITION: residue

The **modulo-\(n \) residue** of \(a \) is \(b \) when \(a \equiv b \pmod{n} \) and we know that \(0 \leq b < n \).

We say that there are three residue classes modulo 3. In general, if your modulus is \(n \) there are \(n \) residues classes ranging from 0 to \(n - 1 \). These are the numbers 0, 1, 2, 3, 4, 5, \ldots, \(n - 1 \).

Examples of Modular Arithmetic

The most common example of modular arithmetic involves clocks and time. There are 60 seconds in a minute and 60 minutes in a hour, so the modulus is 60. We tell time in 12 hour shifts so the modulus is 12 in hours.

7 hours past 6 o’clock is not 13 o’clock, it is 1 o’clock.

\[13 \equiv 1 \pmod{12}\] or \[7 + 6 \equiv 1 \pmod{12}\]

20 minutes after one-quarter before the hour is the same thing as 5 after the hour

\[45 + 20 \equiv 5 \pmod{60}\]

EXERCISE

Try to evaluate the following using modular arithmetic

1. \(6 + 8 \equiv ?? \pmod{3} \)
2. \(?? \equiv 4 \pmod{3} \)
3. \(?? \equiv 4 \pmod{7} \)
4. \(9 + 6 \equiv ?? \pmod{5} \)
5. \(9 + 6 \equiv ?? \pmod{4} \)
Modular Arithmetic Rules

Addition Using Modular Arithmetic
Given that \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \) then it is true that \(a + c \equiv (b + d) \pmod{n} \)

Subtraction Using Modular Arithmetic
Given that \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \) then it is true that \(a - c \equiv (b - d) \pmod{n} \)

Multiplication Using Modular Arithmetic
Given that \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \) then it is true that \(ac \equiv bd \pmod{n} \)

Exponentiation Using Modular Arithmetic
Given that \(a \equiv b \pmod{n} \) and \(p \) is a positive integer then it is true that \(a^p \equiv b^p \pmod{n} \)

[Group Work]
Let’s use modular arithmetic for find the last two digits (i.e. the tens and units digits) of \(7^{1942} \) (HINT: The modulus need to use is 100!)

What are the residue classes of 7 (mod 100)?

What can we simplify the expression \(7^{4k} \pmod{100} \) as?

Can we write 1942 as \(4k + j \) where \(k \) and \(j \) are integers and \(j \) is 0, 1, 2 or 3? Do it!

So, what are the last two digits of \(7^{1942} \)?