Name:                                                                                                                        Problem of the Day #14

1.        Cayley Table for the Symmetries of the Square.  Consider the eight symmetries of the square as follows: 

a.        I (identity)

b.       R1 (90 degree counterclockwise rotation)

c.        R2 (180 degree counterclockwise rotation)

d.       R3 (270 degree counterclockwise rotation)

e.        V (reflection across the vertical center line)

f.         H (reflection across the horizontal center line)

g.       D1 (reflection across the “back-slash” diagonal)

h.       D2 (reflection across the “forward-slash” diagonal)

Using these labels for these symmetries of the square, complete the following Cayley Table for this symmetry group.  Remember that “I o R3” would be written in the cell along the row labeled I and the column labeled R3 and in that space you would give the single transformation that is equivalent to doing R3 first following by I.

 

 

o

I

R1

R2

R3

V

H

D1

D2

I

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

D2