

Review definitions of neighborhood, locally homeomorphic, and manifold.

Recall that, in the definition of manifold, we can replace “locally homeomorphic to an open ball in \mathbb{R}^n ” with “locally homeomorphic to \mathbb{R}^n .”

~~~~~

*Example 1.* Is the open rectangle  $(0, 1) \times (0, 2) \subset \mathbb{R}^2$  a manifold? Yes. Of what dimension? 2.

Is the closed rectangle  $[0, 1] \times [0, 2] \subset \mathbb{R}^2$  a manifold? No. Why?

We'd like to say that the closed rectangle is a manifold *with boundary*. Before defining this, we need another definition.

*Definition 1.* The  **$n$ -dimensional upper half-space** is defined as

$$\mathbb{R}_+^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \geq 0\}$$

When  $n = 2$ ,  $\mathbb{R}_+^2$  is also called the **upper half-plane**.

*Example 2.* Draw a picture of what each of  $\mathbb{R}_+^1$  and  $\mathbb{R}_+^2$  looks like.

*Example 3.* Let  $X = B_1(0, 0) \cap \mathbb{R}_+^2$ . Is  $X$  homeomorphic to  $\mathbb{R}_+^2$ ? Does every point in  $X$  have a neighborhood that's homeomorphic to either  $\mathbb{R}^2$  or  $\mathbb{R}_+^2$ ? <sup>1</sup>

~~~~~

Definition 2. (Overrides previous definition of manifold) A topological space X is called an **n -dimensional manifold** (n -mfd for short) if it is Hausdorff, Second Countable, and every point $x \in X$ has a neighborhood that is homeomorphic to \mathbb{R}^n or \mathbb{R}_+^n . A point that has a neighborhood homeomorphic to \mathbb{R}_+^n but has no neighborhood that's homeomorphic to \mathbb{R}^n is called a **boundary point**. The set of all such points (if any) is called the **boundary** of X , denoted by ∂X . If $\partial X \neq \emptyset$, then, for emphasis, X is sometimes called a **manifold with boundary**.

Remark. Depending on the context, the term *boundary* can have two different meanings: when applied to a subset A of a topological space, it means $\overline{A} - A^\circ$; but when applied to a manifold, it is defined according to the above definition. For a given topological space that's also a mfd, these two different types of boundary may happen to be the same set of points, but most often they are not! (Thus, the symbol ∂ has at least three different meanings in mathematics: two types of boundary, plus partial derivative.)

Example 4. Let $X = ([0, 1] \times [0, 1]) / \{(0, y) \sim (1, y)\}$. Draw a picture of X . Is X a manifold? Yes. Is it a manifold with boundary? Yes. What is ∂X ? ²

Example 5. Let $X = [0, 1] \times [0, 1] / \{(0, y) \sim (\frac{1}{2}, y)\}$. Draw a picture of X . Is X a manifold? ³

~~~~~

*Theorem 1.* (Classification of 1-manifolds) Every connected 1-manifold is homeomorphic to  $[0, 1]$  or  $(0, 1)$  or  $[0, 1]$  or  $S^1$ .

Idea of Proof: What things can you create by joining or overlapping line segments end-to-end? Only these four.

~~~~~

We are often interested in studying manifolds that are compact and have no boundary. (Why? One reason is that non-compact manifolds are usually more difficult to study, or at least different very from compact ones.) There is a name for such manifolds:

¹Yes to both; why?

² X is homeomorphic to a cylinder, and its boundary is homeomorphic to two disjoint circles: $([0, 1] \times \{0\}) / \{(0, 0) \sim (1, 0)\} \cup ([0, 1] \times \{1\}) / \{(0, 1) \sim (1, 1)\}$.

³No, why?

Definition 3. A manifold is said to be **closed** if it is compact and has no boundary.

Remark. Do not confuse the two (very) different meanings of *closed*; they depend on the context: A subset A of a topological space X is closed if $X - A$ is open in X (i.e., $X - A$ is in \mathcal{T}). A manifold is closed if it's compact and has no boundary.

Example 6. Which of the four connected 1-mfds are closed? Why is each of the others not closed? ⁴

Hausdorff Spaces

Definition: A topological space X is said to be **Hausdorff** iff every pair of distinct points $x_1, x_2 \in X$ can be **separated** by open sets, i.e., there exist disjoint open sets $U_1, U_2 \subseteq X$ such that $x_i \in U_i$.

Example 7. Determine whether each of the following is Hausdorff.

- (a) \mathbb{R}^2 with the standard topology (induced by the Euclidean metric).
- (b) \mathbb{R}^2 with the discrete topology.
- (c) \mathbb{R}^2 with the indiscrete topology. ⁵

Example 8. Which of the following are manifolds? Why?

- (a) $([0, 2] \cup [5, 7]) / \{\forall x \in [0, 1], x \sim (x + 5)\}$. ⁶
- (b) $([0, 2] \cup [5, 7]) / \{\forall x \in [0, 1], x \sim (x + 5)\}$.

Answer to (b): Every point does have a neighborhood that's homeomorphic to \mathbb{R} ; nevertheless, this is not a manifold! Why? ⁷

⁴Only S^1 is closed. $[0, 1]$ has boundary. $(0, 1)$ isn't compact. $[0, 1)$ has boundary and isn't compact.

⁵Yes, yes, no. Why?

⁶Not a mfd, since the point $[1] = [6] = \{1, 6\}$ in the quotient space does not have a neighborhood that's homeomorphic to \mathbb{R}^n or \mathbb{R}_+^n for any n .

⁷Because it's not Hausdorff: the points 1 and 6 cannot be separated by open sets.