1. (a) Let $X_1 = \mathbb{R}$, $T_1 = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}$. Prove that T_1 is a topology.

(b) Let (X_2, T_2) be \mathbb{R} with the standard topology (i.e., the topology induced by the Euclidean metric). Let $f : X_1 \to X_2$ and $g : X_2 \to X_1$ be given by $f(x) = x$ and $g(x) = x$. Is f continuous? Is g continuous? Prove your answers.

2. For $i = 1, 2$, let (X_i, T_i) be a topological space.

(a) Show that if T_1 is the discrete topology, then every function $f : X_1 \to X_2$ is continuous.

(b) Show that if T_2 is the indiscrete topology, then every function $f : X_1 \to X_2$ is continuous.

3. For $i = 1, 2, 3$, let (X_i, T_i) be a topological space. Let $f : X_1 \to X_2$ and $g : X_2 \to X_3$ be continuous maps. Prove that their composition $g \circ f : X_1 \to X_3$ is continuous.