1. Let \(f : \mathbb{R} \to \mathbb{R} \) be given by:
\[
 f(x) = \begin{cases}
 1/2 & \text{if } x < 0 \\
 1/3 & \text{if } x \geq 0
\end{cases}
\]. Prove that \(f \) is not continuous at 0.

2. In the following, just find a map each problem asks for, without proving continuity, injectivity, or surjectivity. Each of the following sets is assumed to come with the standard Euclidean metric.

 (a) Let \(M_1 \subset \mathbb{R}^2 \) be the closed unit disk (i.e., \(M_1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\} \)). Let \(M_2 \subset \mathbb{R}^2 \) be the closed disk of radius 2 centered at the origin. Find a continuous bijection (one-to-one and onto map) \(f : M_1 \to M_2 \).

 (b) Let \(M_3 \subset \mathbb{R}^2 \) be the closed disk of radius 1 centered at the point \((3,4)\). Find a continuous bijection \(f : M_1 \to M_3 \).

 (c) Let \(M_4 \subset \mathbb{R}^2 \) be the closed disk of radius 2 centered at the point \((3,4)\). Find a continuous bijection \(f : M_1 \to M_4 \).

3. Suppose \(M_1 = (X_1,d_1) \) and \(M_2 = (X_2,d_2) \) are metric spaces. Pick a point \(b \in X_2 \), and let \(f : X_1 \to X_2 \) be the constant map \(f(x) = b \), \(\forall x \in X_1 \). Show that \(f \) is continuous on \(X_1 \).

4. Suppose \(M_1 = (X_1,d_1) \) and \(M_2 = (X_2,d_2) \) are metric spaces, and suppose \(f : X_1 \to X_2 \) is a continuous function. Prove that \(\forall a \in X_1 \) and \(\forall \varepsilon > 0 \), \(\exists \delta > 0 \) such that the ball of radius \(\delta \) around \(a \) is mapped under \(f \) to inside the ball of radius \(\varepsilon \) around \(f(a) \); i.e., \(f(B_\delta(a)) \subseteq B_\varepsilon(f(a)) \).

5. Suppose \(M_1 = (X_1,d_1) \) and \(M_2 = (X_2,d_2) \) are metric spaces, and suppose \(f : X_1 \to X_2 \) is a continuous function. Prove that the preimage of any open set in \(M_2 \) is an open set in \(M_1 \); i.e., if \(A_2 \subset X_2 \) is open, then \(A_1 = f^{-1}(A_2) \subset X_1 \) is also open.