Section 1: Metric spaces; open and closed sets; limit points; interior, closure, boundary; continuity.

Definition 1. A **metric space** \(M \) consists of a set \(X \) and a **distance function** \(d : X \times X \to [0, \infty) \) such that \(\forall x, y, z \in X \):

1. \(d(x, y) = 0 \) iff \(x = y \);
2. \(d(x, y) = d(y, x) \) (\(d \) is symmetric);
3. \(d(x, z) \leq d(x, y) + d(y, z) \) (triangle inequality).

Example 1. \(\mathbb{R} \) with the **Euclidean metric** (the “standard” metric):
\(X = \mathbb{R} \), \(d(x, y) = |x - y| \). Why is this a metric space? If we replace \(d \) with \(d(x, y) = x - y \), will we still have a metric space?

Example 2. \(\mathbb{R} \) with the **discrete metric**, denoted \(\mathbb{R}_d \):
\(X = \mathbb{R} \), \(d(x, y) = \left\{ \begin{array}{ll} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{array} \right. \). Why is this a metric space? How about \(d(x, y) = 0 \ \forall x, y \)?

Example 3. \(\mathbb{R}^n \) with the **Euclidean metric**:
\(X = \mathbb{R} \times \cdots \times \mathbb{R} \) (\(n \) times), for \(x = (x_1, \ldots, x_n) \), \(y = (y_1, \ldots, y_n) \), \(d(x, y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2} \). Why is this a metric space? Conditions 1 and 2 of the definition (above) are clearly satisfied. Condition 3 is the well-known triangle inequality (skip proof).

Example 4. \(\mathbb{R}^2 \) with the **taxicab metric**:
\(X = \mathbb{R}^2 \), for \(a = (a_1, a_2) \), \(b = (b_1, b_2) \), \(d(a, b) = |a_1 - b_1| + |a_2 - b_2| \). Why is this a metric space? (HW)

Note.

1. Unless stated otherwise, whenever we refer to \(\mathbb{R} \) as a metric space without stating what the distance function \(d \) is, we mean “\(\mathbb{R} \) with the Euclidean metric.”

2. For a metric space \(M = (X, d) \), \(X \) is called the **underlying set**. We will often abuse notation and write \(M \) instead of \(X \), or vice versa; for example, we may write \(x \in M \) instead of \(x \in X \); or we may refer to \(X \) as a metric space, when it’s really \(M = (X, d) \) that’s a metric space.

Definition 2. Given a metric space \(M \), a point \(x \in M \), and a real number \(r \geq 0 \), the **ball** of radius \(r \) around \(x \) is defined as
\[B_r(x) = \{ y \in M \mid d(x, y) < r \} \]

Example 5. In \(\mathbb{R} \) with the Euclidean metric, \(B_2(1) = ? \)

Example 6. In \(\mathbb{R}^2 \) with the Euclidean metric, what does \(B_2(1, 2) \) look like? (Strictly speaking, we should write \(B_2((1, 2)) \); but too many parentheses can make it difficult to read, so we slightly abuse notation and write only one set of parentheses.) How about \(B_2(1, 2) \subset \mathbb{R}^3 \), what does it look like?

Example 7. In \(\mathbb{R}_d \), what is \(B_3(8) \)? What is \(B_{0.5}(8) \)?

Example 8. In \(\mathbb{R}^2 \) with the taxicab metric, what does \(B_1(0, 0) \) look like?

Example 9. Is there a metric on \(\mathbb{R}^2 \) for which \(B_1(0, 0) = (-1, 1) \times (-1, 1) \)?

Definition 3. A subset \(A \) of a metric space \(M \) is said to be **open** in \(M \) iff \(\forall x \in A \), \(\exists r > 0 \) such that \(B_r(x) \subset A \).

1. The open interval from \(-1\) to \(3\): \((-1, 3)\).
2. \(B_3(8) = \mathbb{R} ; B_{0.5}(8) = \{8\} \).
3. \(d(a, b) = \max\{ |a_1 - b_1|, |a_2 - b_2| \} \).
Example 10. The interval $(-1, 1]$ is not open in \mathbb{R}. Why?

Example 11. The interval $(-1, 1)$ is an open subset of \mathbb{R}. Why?

Proof: Given an arbitrary $x \in (-1, 1)$, let $r = \min\{d(x, 1), d(x, -1)\}$. Then, we prove as follows that $B_r(x) \subset (-1, 1)$. Let $y \in B_r(x)$; we’ll show $y \in (-1, 1)$. We will do so by showing that $d(0, y) < 1$. By definition of $B_r(x)$, $d(x, y) < r$; so $d(x, y) < \min\{d(x, 1), d(x, -1)\}$; so $d(x, y) < d(x, 1)$ and $d(x, y) < d(x, -1)$. By the triangle inequality, $d(0, y) \leq d(0, x) + d(x, y)$. So, $d(0, y) < d(0, x) + d(x, 1)$ and $d(0, y) < d(0, x) + d(x, -1)$. If $x \geq 0$, then the right hand side of the first inequality equals 1. If $x < 0$, then the left hand side of the second inequality equals 1. So either way, $d(0, y) < 1$, as desired. We showed that for every $x \in (-1, 1)$, there is a positive r such that $B_r(x) \subset (-1, 1)$. So by the definition of open, $(-1, 1)$ is an open subset of \mathbb{R}.

Example 12. Is the interval $(2, \infty)$ open in \mathbb{R}? Yes. Why?

Definition 4. Let A be a subset of a metric space M. The complement of A is $A^c = M - A$. A is said to be closed in M iff its complement A^c is open in M.

Example 13. $(-\infty, -1] \cup [1, \infty)$ is closed in \mathbb{R}. Why?

Example 14. Is $(-\infty, -1]$ closed in \mathbb{R}?

Example 15. Is $[-1, 1]$ closed in \mathbb{R}?

Example 16. $(-1, 1)$ is neither open nor closed in \mathbb{R}. Why?

Example 17. \mathbb{R} is open in \mathbb{R}. Why? ϕ is open in \mathbb{R}. Why?

Example 18. \mathbb{R} is closed in \mathbb{R}. ϕ is closed in \mathbb{R}. Why?

Example 19. Is the x-axis open or closed or neither in \mathbb{R}^2?

Example 20. Find an open set in \mathbb{R}_d. Find a closed set in \mathbb{R}_d. (Quote from Munkres’s book, Topology: Q: “What’s the difference between a door and a set?” A: “A door is always either open or closed.”)

For emphasis, $B_r(x)$ is sometimes called the open ball of radius r around x. In contrast, we have:

Definition 5. The closed ball of radius r around x is defined as

$$B_r(x) = \{y \in M \mid d(x, y) \leq r\}$$

Example 21. Draw the open and closed balls of radius 5 around the point 2 in \mathbb{R}. Draw the open and closed balls of radius 5 around the point $(2, 5)$ in \mathbb{R}^2.

Definition 6. Let A be a subset of a metric space M. A point $x \in M$ is said to be a limit point of A iff every ball around x contains a point of A other than x.

(Synonyms of limit point: cluster point; accumulation point.)

Example 22. Let $M = \mathbb{R}$, $A = [0, 2]$. Which of the points $x = 0, 1, 2, 3$ are limit points of A? Why?

What if $A = [0, 1] \cup \{2\}$?

(Equivalent definition of limit point: x is a limit point of A iff $\forall \epsilon > 0, \exists y \in A - \{x\}$ such that $d(x, y) < \epsilon$.)

4Because there is no positive r for which $B_r(1) \subset (-1, 1]$.
5Yes. Why?
6Yes. Why?
7Closed. Why?
8Each of \mathbb{R}_d and ϕ is both open and closed.
90, 1 and 2.
100 and 1.
Theorem 1. A subset A of a metric space M is closed iff it contains all its limit points.

Proof. “\Rightarrow” : Suppose A is closed. Then, by definition, A^c is open. Let x be a limit point of A. We want to show $x \in A$. By definition of limit point, every open ball around x intersects $A - \{x\}$; therefore no open ball around x is entirely contained in A^c. This implies $x \notin A^c$, since if x were in A^c, then there would be an open ball around x contained entirely in A^c (since A^c is open). Finally, since $x \notin A^c$, x must be in A, as desired.

“\Leftarrow” : (Do yourself!)

Definition 7. Given a subset A of a metric space M, its interior A° is defined as the set of all points $x \in A$ such that some open ball around x is a subset of A. (A° is also written as Int A or int(A).)

Example 23. (a) What is the interior of $[2, 5) \subset \mathbb{R}$? 11
(b) What is the interior of $(2, 5) \subset \mathbb{R}$? 12
(c) What is the interior of the closed ball of radius 2 around the origin in \mathbb{R}^2? 13

Definition 8. Given a subset A of a metric space M, its closure \overline{A} is defined as A union the set of all limit points of A. The boundary of A is defined as $\partial A = \overline{A} - A^\circ$.

Example 24. (a) What are the closure and boundary of $[2, 5) \subset \mathbb{R}$? 14
(b) What is the closure and boundary of the closed ball of radius 2 around the origin in \mathbb{R}^2? 15

Continuity

Definition 9. Let M_1, M_2 be metric spaces, with d_1 and d_2 as their corresponding distance functions. A function $f : M_1 \to M_2$ is said to be continuous at $a \in M_1$ iff as $x \to a$, $f(x) \to f(a)$; this means: $\forall \epsilon > 0$, $\exists \delta > 0$ such that for every x that satisfies $d_1(a, x) < \delta$ we have $d_2(f(a), f(x)) < \epsilon$; or, equivalently, $f(B_\delta(a)) \subset B_\epsilon(f(a))$. We say f is continuous if it is continuous at every point in M_1.

Example 25. Prove that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x$ is continuous.

Proof: Fix an arbitrary point $p \in \mathbb{R}$. We will show f is continuous at p, by showing that $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall q \in B_\delta(p)$, $f(q) \in B_\epsilon(f(p))$.

Pick any $\epsilon > 0$. Let $\delta = \epsilon/2$. Then, for any $q \in B_\delta(p)$ we have: $d(f(p), f(q)) = |2p - 2q| = 2|p - q| < 2\delta = \epsilon$. So $f(q) \in B_\epsilon(f(p))$, as desired. Since p was arbitrary, f is continuous at every point in \mathbb{R}.

Example 26. Determine whether each of the following functions f and g from \mathbb{R} to \mathbb{R} is continuous at 0. (Support your answers informally, without rigorous proof.)

$$f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \quad g(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

11 $(2, 5)$.
12 $(2, 5)$.
13 the open ball of radius 2 around the origin.
14 closure $= [2, 5]$; boundary $= \{2, 5\}$.
15 closure $= \text{itself}$; boundary $= \text{circle of radius 2 around the origin}$.