1. Prove that a space \(X \) is connected iff it contains no nonempty, proper subset which is both open and closed. (To say \(A \) is a proper subset of \(X \) means \(A \subset X \) but \(A \neq X \).)

2. True or false: If \(A \) and \(B \) are not disjoint, and each is a connected subspace of a topological space \(X \), then \(A \cap B \) is connected. Prove your answer.

3. True or false: If \(A \) and \(B \) are not disjoint, and each is a connected subspace of a topological space \(X \), then \(A \cup B \) is connected. Prove your answer.

4. (a) Prove the following theorem:
 Theorem: The continuous image of a connected set is connected; i.e, if \(f : X \to Y \) is a continuous map between topological spaces, and if \(X \) is connected, then \(f(X) \) is connected.

 (b) Prove the following corollary:
 Corollary: If \(X \) is connected, and \(Y \) is homeomorphic to \(X \), then \(Y \) is connected.

Extra Credit Problems

5. Prove the following theorem: \(A \subset \mathbb{R} \) is connected iff \(A \) is an interval (open, closed, or half open; infinite or half-infinite).