1. Show by example that the union of an infinite collection of closed subsets of a metric space is not necessarily closed.

2. In a previous homework problem we showed that the union of any two closed subsets of a metric space is closed. Use this fact, and mathematical induction, to prove that the union of any finite collection of closed subsets of a metric space is closed.

3. In a previous homework problem we showed that the union of any collection of open subsets of a metric space is open. Use this fact to prove that the intersection of any collection of closed subsets of a metric space is closed.

Hint: Use de Morgan’s Law: Let \(\{A_{\alpha} \mid \alpha \in I\} \) be any collection of subsets of some fixed set, where \(I \) is an index set; then

\[
\left(\bigcap_{\alpha \in I} A_{\alpha} \right)^c = \bigcup_{\alpha \in I} A_{\alpha}^c.
\]

Summary of unions and intersections of open or closed subsets

- Union of any collection of open sets is open.
- Intersection of any finite number of open sets is open.
- Intersection of an infinite number of open sets may not be open.
- Intersection of any collection of closed sets is closed.
- Union of any finite number of closed sets is closed.
- Union of an infinite number of closed sets may not be closed.

4. Let \(A \subseteq \mathbb{R}^2 \) be given by: \(A = \{(x, y) \mid 1 < x^2 + y^2 \leq 2\} \cup \{(0, 0)\} \).

 (a) Draw a picture of \(A \).

 (b) Draw a picture of, and describe, using set notation, \(A^\circ \) (the interior of \(A \)).

 (c) Draw a picture of, and describe, using set notation, \(\overline{A} \) (the closure of \(A \)).

 (d) Draw a picture of, and describe, using set notation, \(\partial A \) (the boundary of \(A \)).

 (e) Find all limit points of \(A \) that are not in \(A \). Is \((0, 0) \) a limit point of \(A \)? Why?

Extra Credit Problems

5. Let \(A \) be a subset of a metric space \(M \). Prove \(A^\circ \) is open.

6. Let \(A \) be a subset of a metric space \(M \). Prove \(A^\circ \) is the union of all subsets \(C \subseteq A \) which are open in \(M \). Prove \(\overline{A} \) is the intersection of all subsets \(C \) such that \(A \subseteq C \) and \(C \) is closed in \(M \).