Section 1: Metric spaces; open and closed sets; limit points; interior, closure, boundary; continuity.

Math 460 Topology

Definition 1. A **metric space** M is a set X and a function $d : X \times X \to [0, \infty)$ such that $\forall x, y, z \in X$

1. $d(x, y) = 0$ iff $x = y$;
2. $d(x, y) = d(y, x)$ (d is symmetric);
3. $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality).

Example 1. \mathbb{R} with the **Euclidean metric** (the “standard” metric):

$X = \mathbb{R}$, $d(x, y) = |x - y|$. Why is this a metric space? What if we replace d with $d(x, y) = x - y$; would we have a metric space?

Example 2. \mathbb{R} with the **discrete metric**, denoted \mathbb{R}_d:

$X = \mathbb{R}$, $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$. Why is this a metric space? How about $d(x, y) = 0 \forall x, y$?

Example 3. \mathbb{R}^n with the **Euclidean metric**:

$X = \mathbb{R} \times \cdots \times \mathbb{R}$ (n times), for $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$, $d(x, y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}$. Why is this a metric space? (Do in HW)

Example 4. \mathbb{R}^2 with the **taxicab metric**:

$X = \mathbb{R}^2$, for $a = (a_1, a_2)$, $b = (b_1, b_2)$, $d(a, b) = |a_1 - b_1| + |a_2 - b_2|$. Why is this a metric space?

Note.

1. Unless stated otherwise, whenever we refer to \mathbb{R} as a metric space without stating what the metric function d is, we mean “\mathbb{R} with the Euclidean metric.”

2. For a metric space $M = (X, d)$, X is called the **underlying set**. We will often abuse notation and write M instead of X, or vice versa; for example, we may write $x \in M$ instead of $x \in X$; or we may refer to X as a metric space, when it’s really $M = (X, d)$ that’s a metric space.

Definition 2. Given a metric space M, a point $x \in M$, and a real number $r \geq 0$, the **ball** of radius r around x is defined as

$$B_r(x) = \{ y \in M | d(x, y) < r \}$$

Example 5. In \mathbb{R} with the Euclidean metric, $B_2(1) = ?$ \(^1\)

Example 6. In \mathbb{R}^2 with the Euclidean metric, what does $B_2(1, 2)$ look like? (Strictly speaking, we should write $B_2((1, 2))$; but too many parentheses can make in difficult to read, so we slightly abuse notation and write only one set of parentheses.) How about $B_2(1, 2) \subset \mathbb{R}^3$, what does it look like?

Example 7. In \mathbb{R}_d, what is $B_3(8)$? What is $B_{0.5}(8)$? \(^2\)

Example 8. In \mathbb{R}^2 with the taxicab metric, what does $B_4(0, 0)$ look like?

Example 9. Is there a metric on \mathbb{R}^2 for which $B_1(0, 0) = (-1, 1) \times (-1, 1)$? \(^3\)

Definition 3. A subset A of a metric space M is said to be **open** in M iff $\forall x \in A$, $\exists r > 0$ such that $B_r(x) \subset A$.

\(^1\)The open interval from -1 to 3: $(-1, 3)$.

\(^2\) $B_3(8) = \mathbb{R}$; $B_{0.5}(8) = \{8\}$.

\(^3\) $d(a, b) = \max\{|a_1 - b_1|, |a_2 - b_2|\}$.

1
Definition 4. Let A be a subset of a metric space M. The complement of A is $A^c = M - A$. A is said to be closed in M iff its complement A^c is open in M.

Example 13. $(-\infty, -1] \cup [1, \infty)$ is closed in \mathbb{R}. Why?

Example 14. Is $(-\infty, -1]$ closed in \mathbb{R}?

Example 15. Is $[-1, 1]$ closed in \mathbb{R}?

Example 16. $[-1, 1)$ is neither open nor closed in \mathbb{R}. Why?

Example 17. \mathbb{R} is open in \mathbb{R}. ϕ is open in \mathbb{R}. Why?

Example 18. \mathbb{R} is closed in \mathbb{R}. ϕ is closed in \mathbb{R}. Why?

Example 19. Is \mathbb{R} open or closed or neither in \mathbb{R}^2?

Example 20. Find an open set in \mathbb{R}_d. Find a closed set in \mathbb{R}_d.

(Quote from Munkres’s book, Topology: Q: “What’s the difference between a door and a set?” A: “A door is always either open or closed.”)

For emphasis, $B_r(x)$ is sometimes called the open ball of radius r around x. In contrast, we have:

Definition 5. The closed ball of radius r around x is defined as

$$B_r(x) = \{ y \in M \mid d(x, y) \leq r \}$$

Example 21. Draw the open and closed balls of radius 5 around the point 2 in \mathbb{R}. Draw the open and closed balls of radius 5 around the point $(2, 5)$ in \mathbb{R}^2.

Definition 6. Let A be a subset of a metric space M. A point $x \in M$ is said to be a limit point of A iff every ball around x contains a point of A other than x.

(Synonyms of limit point: cluster point; accumulation point.)

4Because there is no positive r for which $B_r(1) \subset (-1, 1]$.

5Yes. Why?

6Yes. Why?

7Closed. Why?

8Each of \mathbb{R}_d and ϕ is both open and closed.
Example 22. Let $M = \mathbb{R}$, $A = [0, 2)$. Which of the points $x = 0, 1, 2, 3$ are limit points of A? Why? \(^9\) What if $A = [0, 1] \cup \{2\}$? \(^10\)

(Equivalent definition of limit point: x is a limit point of A iff $\forall \epsilon > 0$, $\exists y \in A - \{x\}$ such that $d(x, y) < \epsilon$.)

Theorem 1. A subset A of a metric space M is closed iff it contains all its limit points.

Proof. “\Rightarrow” : Suppose A is closed. Then, by definition, A^c is open. Let x be a limit point of A. We want to show $x \in A$. By definition of limit point, every open ball around x intersects $A - \{x\}$; therefore no open ball around x is entirely contained in A^c. This implies $x \notin A^c$, since if x were in A^c, then there would be an open ball around x contained entirely in A^c (since A^c is open). Finally, since $x \notin A^c$, x must be in A, as desired.

“\Leftarrow” : (Do yourself!) \(\square\)

Definition 7. Given a subset A of a metric space M, its interior A^o is defined as the set of all points $x \in A$ such that some open ball around x is a subset of A.

Example 23. (a) What is the interior of $[2, 5) \subset \mathbb{R}$? \(^11\)
(b) What is the interior of $(2, 5) \subset \mathbb{R}$? \(^12\)
(c) What is the interior of the closed ball of radius 2 around the origin in \mathbb{R}^2? \(^13\)

Definition 8. Given a subset A of a metric space M, its closure \overline{A} is defined as A union the set of all limit points of A. The boundary of A is defined as $\partial A = \overline{A} - A^o$.

Example 24. (a) What are the closure and boundary of $[2, 5) \subset \mathbb{R}$? \(^14\)
(b) What is the closure and boundary of the closed ball of radius 2 around the origin in \mathbb{R}^2? \(^15\)

Continuity

Definition 9. Let M_1, M_2 be metric spaces, with d_1 and d_2 as their corresponding distance functions. A function $f : M_1 \to M_2$ is said to be continuous at $a \in M_1$ iff as $x \to a$, $f(x) \to f(a)$; this means: $\forall \epsilon > 0$, $\exists \delta > 0$ such that for every x that satisfies $d_1(a, x) < \delta$ we have $d_2(f(a), f(x)) < \epsilon$; or, equivalently, $f(B_\delta(a)) \subset B_\epsilon(f(a))$. We say f is continuous if it is continuous at every point in M_1.

Example 25. Prove that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x$ is continuous.

Proof: Fix an arbitrary point $p \in \mathbb{R}$. We will show f is continuous at p, by showing that $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall q \in B_\delta(p)$, $f(q) \in B_\epsilon(f(p))$.\(^9\) 0, 1 and 2. \(^10\) 0 and 1. \(^11\) (2, 5). \(^12\) (2, 5). \(^13\) the open ball of radius 2 around the origin. \(^14\) closure = $[2, 5]$; boundary = $\{2, 5\}$. \(^15\) closure = itself; boundary = circle of radius 2 around the origin.
Pick any $\epsilon > 0$. Let $\delta = \epsilon / 2$. Then, for any $q \in B_\delta(p)$ we have: $d(f(p), f(q)) = |2p - 2q| = 2|p - q| < 2\delta = \epsilon$. So $f(q) \in B_\epsilon(f(p))$, as desired. Since p was arbitrary, f is continuous at every point in \mathbb{R}.

Example 26. Determine whether each of the following functions f and g from \mathbb{R} to \mathbb{R} is continuous at 0. (Support your answers informally, without rigorous proof.)

\[f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \quad g(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \]