HW 26 #1:
(a) Show \((0, 1) \cong (0, \infty)\).
\(\text{Pf} \) Define \(f : (0, 1) \to (0, \infty)\)
by \(f(x) = \frac{1}{x} - 1\). Then
f is a bij (PF omitted)
& \(f\) takes rationals to rationals.

(b) Let \(T = \{\langle x, y, z \rangle \mid x, y, z \in \mathbb{N}\}\).
Show \(T \cong \mathbb{N}\).
\(\text{Pf} \) Let \(f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}\) be given by
f(m, n) = \(2^m (2n+1) - 1\).
By previous HW, \(f\) is a bijection.
Define \(g : T \to \mathbb{N}\) by
g(\langle x, y, z \rangle) = f(f(x, y), z).
Then \(g\) is a bij (PF omitted).
So \(T \cong \mathbb{N}\).

(c) Show \{finite strings of English alphabet\}
is equinumerous to \(\mathbb{N}\).
\(\text{Pf} \) List the strings by increasing
length, and within each group of
strings of same length, order
them lexicographically ("dictionary
order"). Then assign the
Lemma: let \(x, y, z \) be sets s.t. \(x \notin z, y \in z \). Then
\[z \cong (z - y) \cup \{x\}. \]

Proof: Define \(f: z \to (z - y) \cup \{x\} \) by:
\[f(a) = \begin{cases}
 a & \text{if } a \neq y \\
 x & \text{if } a = y
\end{cases} \]

Then \(f \) is a bijection (Proof: HW). \(\square \)

\[\text{P.138 #6} \quad \text{let } K \text{ be a nonzero cardinal, show } \not\exists A \text{ a set containing all sets of cardinality } K. \]

Proof: Suppose toward contradiction there is such a set, \(A \). It's enough to show \(\forall x (x \in UA) \), for then \(UA \) would be a set that contains every set, which we've already shown is impossible.

Let \(x \) be any set. With \(x \in UA \).
1. \(\text{card } K = K \), by def of \(\text{card} \).
2. \(K \in A \), by def of \(A \).

If \(x \in K \), then \(x \in UA \) by 2 & def of \(U \), so we're done. So assume \(x \notin K \).
3. \(K \neq 0 \), by hypothesis.
4. \(\exists y (y \in K) \), by 3.
5. Let \(\alpha = (K - y) \cup \{x\} \).
6. \(\text{card } \alpha = \text{card } K = K \) by the lemma below.
7. \(\alpha \in A \), by 6 & def of \(A \).
8. \(x \in \alpha \), by 5 & def of \(U \).
9. \(x \in UA \), by 7 & 8.

So we've shown \(UA \) contains all sets, \(\not\exists A \). \(\square \)
P. 138 #7 Spse A is finite, f: A → A. Show f is 1-1 ↔ f onto.

 Pf "⇒":
 Spse f is 1-1.
 Then f: A → ran f is onto by def of ran & def of onto.
 So A ≈ ran f ⊆ A.

 By Corollary 6C, ran f cannot be a proper subset of A.
 So ran f = A. So f is onto.

 "⇐":
 1. Spse f is onto.
 Since A is finite,
 2. Æ bijecton g: A → n for some n ∈ w.
 3. For each a ∈ A, \(f^{-1} \{ \{a\} \} \) ≠ ∅
 since f is onto.
 4. \(g(f^{-1} \{ \{a\} \}) \) is a nonempty subset of w, by 2 & 3.
 5. Let \(n_a \) be the smallest elem of \(g(f^{-1} \{ \{a\} \}) \), by well-ord of w.
 6. Let \(x_a ∈ A \) be the element that "corresponds" to \(n_a \), i.e.,

\[x_a = f^{-1}(n_a). \]

7. Let \(X = \{ x_a | a ∈ A \} \) ⊆ A.

8. Then \(f \upharpoonright X : X → A \)
 is onto since \(\forall a ∈ A, f(x_a) = a. \)

9. \(f \upharpoonright X \) is 1-1 since
 \[f(x_a) = f(x_b) ⇒ a = b \]
 \[⇒ x_a = x_b. \]

10. \(X ≈ A \), by 8 & 9.

11. \(X = A \), by 7, 10, Cor 6C.

12. \(f \upharpoonright X = f \upharpoonright A = f \), by 10.

13. f is 1-1, by 9 & 12. □