(a) $A \neq \emptyset$; $A \in A \Rightarrow A$ is a trans reln. Show
$\cap A$ is a trans reln.

Pf. 1. Spse $<x, y> \in \cap A$
 $\land <y, z> \in \cap A$

2. Let A be an arbitrary element of \mathfrak{A}.

3. $<x, y> \in A \land <y, z> \in A$
 by 1, 2 & def of \cap.

4. $<x, z> \in A$, by 3 &
 def of trans, b/c A is trans.

5. $<x, z> \in \cap A$ by 4
 & 2 (b/c A is arbitrary
 elem of \mathfrak{A}.)

6. $\cap A$ is trans by 1 & 5
 & def of trans. \Box

(b) False: Let $A_1 = \{<a, b>\}$,
 $A_2 = \{<b, c>\}$, where
 a, b, c are distinct sets.
Then $A_1 \cup A_2$ are trans,
but $A_1 \cup A_2$ is not. \Box
"⇒": Suppose R is symm & trans.
WTS: R = R^−1 o R.
1. Suppose <x, y> ε R
2. <y, x> ε R, since R symm.
3. yRx ∨ xRy, by 1 & 2.
4. yRy, by 3 & R trans.
5. yR^−1 y, by def of R^−1
6. yR^−1 y ∨ xRy, by 1 & 5
7. <y, x> ε R^−1 o R, by 6 & def of compos.
8. <x, y> ε R ⇒ <y, x> ε R^−1 o R, by 1 & 7.
9. Now suppose <x, y> ε R^−1 o R,
10. ∃z (xRz ∨ zR^−1 y), by def of compos.
11. xRz ∨ yRz, by 10 & def of R^−1
12. xRz ∨ zRy, by R symm
13. xRy, by 12 & R trans.
14. <x, y> ε R^−1 o R ⇒ <y, x> ε R, by 9 & 13.

⇐": Suppose R = R^−1 o R (hypothesis)
(i) WTS: R is symm,
1. Suppose <x, y> ε R.
2. <x, y> ε R^−1 o R, by hypoth & 1.
3. ∃z (xRz ∨ zR^−1 y), by 2 & def of compos.
4. zR^−1 x ∨ yRz, by 3 & def of R^−1.
5. <y, x> ε R^−1 o R, def of compos & 4.
6. <y, x> ε R, by hypoth & 5.
7. R is symm by 1 & 6.
(ii) WTS: R is trans.
1. Suppose xRy & yRz.
2. xRy & zRy, since R symm.
3. xRy & yR^−1 z, by 2 & def R^−1.
4. <x, z> ε R^−1 o R, by 3 & def of compos.
5. <x, z> ε R, by 4 & hypoth.
6. R trans, by 1 & 5. □