P41. 6. Show that R is a relation iff $R \subseteq \text{dom} A \times \text{ran} A$.

Def. A relation is a set of ordered pairs.

Def. $x \in \text{dom } R \iff \exists y. (x, y) \in R$.

$x \in \text{ran } R \iff \exists x. (x, y) \in R$.

Lemma 30. If $(x, y) \in A$ then $x \in \text{dom } A$ and $y \in \text{ran } A$.

\Rightarrow Suppose A is a relation, need to show $A \subseteq \text{dom } A \times \text{ran } A$.

1. If $x \in A$, $x = (u, v)$ since A is a relation. Def. \circ

2. $u \in \text{dom } R$ and $v \in \text{ran } R$ by def dom and ran \circ

3. $(u, v) \in \text{dom } A \times \text{ran } A$ by def $x \circ$

4. $A \subseteq \text{dom } A \times \text{ran } A$ by def \subseteq.

\Leftarrow Suppose $A \subseteq \text{dom } A \times \text{ran } A$, need to show A is a relation.

1. If $x \in A$, then $x \in \text{dom } A \times \text{ran } A$ by def \subseteq.

2. $x \in \{ (u, v) | u \in \text{dom } A \text{ and } v \in \text{ran } A \}$ by def x.

3. $x = (u, v)$ for some u, v, set. logic \circ

4. A is a relation by def of rel. \circ

P38. 3. Show $A \times B = \bigcup \{ A \times x \mid x \in B \}$.

\Rightarrow Suppose $x \in A \times B$.

1. $x \in \{ (u, v) | u \in A \text{ and } v \in B \}$ by def x.

2. $x = (a, b)$ for some a, b, set. logic \circ

3. $x \in A \times B$ for some $x \in B$ by def \subseteq.

4. $x \in A \times X$ for some $x \in X$, set. logic \circ

5. $x \in \{ A \times x \mid x \in B \}$ def \subseteq.

\Leftarrow works also
5a. \(A, B \) are sets. Show: \(\exists \) a set \(C \) s.t. for any \(y \in C \Rightarrow y = \{ x \in B \mid \exists x \in A \} \)

Helpful (to me) preamble: What is \(C \)? if \(y \in C \Rightarrow y = \{ x \in B \mid \exists x \in A \} \) for some \(x \in A \). So \(y \) is some set of ordered pairs \(\{u \mid u \in A \} \), but \(u \) can be any member of \(B \).

So \(y \) is a subset of \(A \times B \). (the set of all ordered pairs with a given first member)

What does this make \(C \)? all its members are subsets of \(A \times B \).

So \(C \) must be a subset of \(P(A \times B) \)

Our task is to show that \(C \) is a set

\(A, B \) are sets, given \(\exists \) \(A \times B \) is a set, (Lemma 38)

\(\Rightarrow \) \(P(A \times B) \) is a set (Power set axiom)

By the power set axiom:

\(\forall A \forall B \exists C \forall y \in C \iff y \in P(A \times B) \land \exists x \in A \exists y \in B \)

We'll show if \(y \in C \) then \(y \in P(A \times B) \)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(y \in C \Rightarrow y = { x \in B \mid \exists x \in A }) for some (x \in A). (\text{def } C)</td>
</tr>
<tr>
<td>2.</td>
<td>(y \in P(A \times B)) by (\exists x \in A) and (\exists y \in B). (\text{def } P)</td>
</tr>
<tr>
<td>3.</td>
<td>(y \in P(A \times B)) by (\text{def } P), (\exists)</td>
</tr>
<tr>
<td>4.</td>
<td>(C \subseteq P(A \times B)) (\text{def } \subseteq), (\forall x \subseteq)</td>
</tr>
</tbody>
</table>

So \(C \subseteq P(A \times B) \), so by Subset Axiom \(C \) is a set.