(b) \mathcal{M} is the product of an improper rigid motion and an improper rigid motion.

(c) \mathcal{M} is the product of a reflection and a rotation.

(d) \mathcal{M} is the product of a reflection and a reflection.

60. In each case, state whether the rigid motion \mathcal{M} has (i) no fixed points, (ii) exactly one fixed point, or (iii) infinitely many fixed points.

(a) \mathcal{M} is the product of a reflection with axis l_1 and a reflection with axis l_2. Assume the lines l_1 and l_2 intersect at a point C.

(b) \mathcal{M} is the product of a reflection with axis l_1 and a reflection with axis l_3. Assume the lines l_1 and l_3 are parallel.

61. Suppose that a rigid motion \mathcal{M} is the product of a reflection with axis l_1 and a reflection with axis l_2, where l_1 and l_2 intersect at a point C. Explain why \mathcal{M} must be a rotation with center C.

[Hint: See Exercises 59(d) and 60(a).]

62. Suppose that the rigid motion \mathcal{M} is the product of the reflection with axis l_1 and the reflection with axis l_3, where l_1 and l_3 are parallel. Explain why \mathcal{M} must be a translation.

[Hint: See Exercises 59(d) and 60(b).]

63. Jogging

63. Suppose that lines l_1 and l_2 intersect at C and that the angle between them as shown in the following figure is α.

(a) Give the rotocenter, angle, and direction of rotation of the product of the reflection with axis l_1 and the reflection with axis l_2.

(b) Give the rotocenter, angle, and direction of rotation of the product of the reflection with axis l_2 and the reflection with axis l_1.

65. Translation 1 moves point P to point P'; translation 2 moves point Q to point Q', as shown in the figure.

(a) Find the images of P and Q under the product of translation 1 and translation 2.

(b) Show that the product of translation 1 and translation 2 is a translation. Give a geometric description of the vector of the translation.

66. (a) Given a glide reflection with axis l and vector \mathbf{v} as shown in the figure, find the image of the triangle ABC under the product of the glide reflection with itself.

(b) Show that the product of a glide reflection with itself is a translation. Describe the direction and amount of the translation in terms of the direction and amount of the original glide.

67. (a) Explain why a border pattern cannot have a refe-