1. (20 points) Suppose A, B, and C are noncollinear points and L is a line not containing any of them. Prove that if L intersects one of the segments of the triangle ABC, then it intersects a second one.

2. (20 points) Let ABC be a triangle. Prove that if $AB > AC$, then $m \angle C > m \angle B$. (Hint: Let D be a point between A and B such that $AD = AC$.)

3. (20 points) Let ABC be a triangle. Let $P, Q, R,$ and S be four distinct points such that

 (a) $PQ = BC$,

 (b) R and S are on the same side of PQ,

 (c) $m \angle RPQ = m \angle B$, and

 (d) $m \angle SQP = m \angle C$.

 Prove that $PR \cap QS \neq \emptyset$.

Quiz #2. Math 360, Axiomatic Geometry.

Instructor: Ramin Naimi

Fri 27 Sept 2002

Closed book. Closed Notes. 20 points per problem. Please write very legibly.