Some of the following is a review from Calculus. You should become comfortable with them.

Definition: Let’s say \(f(n) \) dominates \(g(n) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \pm\infty \) (or, equivalently, \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0 \)).

1. Assume \(f(n) \) and \(g(n) \) both tend to infinity as \(n \) tends to infinity. Is there any relation between “\(f \) dominates \(g \)”, “\(g \) dominates \(f \)”, and “\(f \) is \(O(g) \)”\)? (For example, are two of them equivalent, or does one imply another?) Prove your answer.

2. Prove that every polynomial is dominated by \(n^{\log n} \).

3. Sort the following functions in order of dominance.

 \[f(n) = n^{\log n}, \quad g(n) = 2^n, \quad h(n) = n^{\sqrt{n}}, \quad j(n) = n^{0.1n}, \quad k(n) = 1.1^n, \quad l(n) = n^n, \quad m(n) = n! \]

Hints: 1. Use L’Hopital’s rule. 2. Use Stirling’s approximation: \(n! \approx n^n \sqrt{2\pi n}/e^n \), where \(r(n) \approx s(n) \) means as \(n \) tends to infinity, \(r(n)/s(n) \) tends to 1.