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We discuss some properties of the point spread distribution, defined as the distribution of
the difference of two independent binomial random variables with the same parameter n in-
cluding exact and approximate probabilities and related optimization issues. We use various
approximation techniques for different distributions, special functions, and analytic, combi-
natorial and symbolic methods, such as multi-summation techniques. We prove that in case
of unequal success rates, if these rates change with their difference kept fix and small, and n
is appropriately bounded, then the point spread distribution only slightly changes for small
point differences. We also prove that for equal success rates p, the probability of a tie is min-
imized if p = 1/2. Numerical examples are included for the case with n = 12.

Keywords: Skellam distribution; approximating distributions; asymptotic enumeration; spe-
cial functions; multi-summation

AMS Subject Classification: 62E17; 05A16; 33F10

1. Introduction

Questions regarding the point spread distribution in certain sports present a rich
variety of interesting problems. In high scoring sports, e.g., basketball, the underly-
ing scoring distributions can be modeled by independent binomial random variables
while in low scoring sports, e.g., baseball, hockey, and soccer, independent Poisson
random variables might be used. Point spreads are often used to set fairly equal
winning odds in terms of scoring differences in matches between players or teams of
widely different strengths. In fact, bookmakers set a point spread to even the game
for betting purposes [see 1]. On the other hand, there are some infamous cases
involving point-shaving to beat the projected point spread through the bribing of
players of the favored team by gamblers.

In the simplified model, let X and Y represent the number of points scored by
two teams or players in n “games,” respectively. We assume that X and Y are in-
dependent, binomially distributed random variables and introduce the probability
fd(n, p, ε) of a point spread X − Y which is at least as large as d ≥ 0 points in n
games with respective success rates p and p− ε. Section 2 is devoted to the discus-
sion of the symmetry of the point spread distribution fd(n, p, ε), cf. Theorem 2.1.
We study the probability f0(n, p, ε)− f1(n, p, ε) of a tie and that of an exact point
spread d, fd(n, p, ε) − fd+1(n, p, ε), in Section 3, and briefly describe a random
walk based approach for the calculation of the distribution in Section 4. The point
spread distribution is approximated in Sections 5 and 6 by a normal distribution in
Theorem 5.1 and by a Skellam distribution if the success rates are close to one. We
extend some of the calculations to negative values of d in Section 5. In Section 7,
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we ask some optimization questions such as: for a fixed ε ≥ 0, what value of p will
maximize fd(n, p, ε), a question settled in Theorem 7.1 for the case with f0(n, p, 0).
The last section is concerned with the distribution of the absolute point spread.
The main results are summarized in Theorems 2.1, 5.1, and 7.1.

For purely illustrative purposes, we consider an example which touches upon
some aspects of the point spread distribution.

Example. Players 1 and 2 are two basketball players. Player 1 makes 65 percent
of his free-throws, while Player 2 is even better and makes 75 percent. They have a
contest in which they each shoot 12 free-throws. You can assume that the scoring
luck is totally independent from previous or current scoring experience of either
player. We are interested in the following probabilities.

(A) What is the probability that this free-throw contest will end in a tie?
(B) What is the probability that Player 2 will win?
(C) What are the chances that, say, Player 2 scores two more than Player 1?
(D) How about at least two more?

The answers can be calculated easily with most statistical software, and perhaps
in the most economical way and conveniently in S-PLUS, at least in terms of the
frugality of the necessary code. In fact, the answers are one-liners in S-PLUS: for
(A) we get 0.1533 by sum(dbinom(0:12,12,0.65)* dbinom(0:12,12,0.75)), for
(B) 0.6249 is obtained by sum(dbinom(1:12,12,0.75)* pbinom(0:11,12,0.65)),
for (C) sum(dbinom(2:12,12,0.75)*dbinom(0:10,12,0.65)) results in 0.1676,
and for (D) sum(dbinom(2:12,12,0.75)*pbinom(0:10,12,0.65)) yields 0.4482,
with four significant digits. Other values related to the point spread distribution
can be derived in a similar fashion.

We focus on questions (B) and (D), in particular. After calculating these values,
we tested similar settings within a given range but with the same difference in
shooting success rates and found, somewhat surprisingly, that the answers obtained
changed only slightly in (B) and (D). In other words, if there are some external
circumstances that are equally influencing both players to play better or worse then
for small differences, the point spread distribution will change only to a very small
degree. We apply different approximation and summation techniques, a random
walk approach, and discuss related optimization problems to help explain this
observation. Calculations for n = 12 are included to illustrate numerical aspects
and features of the different approaches.

2. Symmetry

Now we prove an interesting symmetry property.

Theorem 2.1 : Let fd(n, p, ε) denote the probability that, in n trials, the
“stronger” player with success rate p accumulates at least d ≥ 0 points more than
the other (equally strong or “weaker”) player with success rate p − ε with ε ≥ 0.
The function fd(n, p, ε), ε ≤ p ≤ 1, is symmetric about (1 + ε)/2 for every n ≥ 1.

Proof : We observe that

fd(n, p, ε) =
n∑
k=d

(
n

k

)
pk(1− p)n−k

k−d∑
j=0

(
n

j

)
(p− ε)j(1− p+ ε)n−j . (1)

Let us assume that ε ≤ p ≤ 1. The claim is that fd(n, p, ε) = fd(n, 1− p+ ε, ε). By
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(1), we have that

fd(n, 1− p+ ε, ε) =
n∑
k=d

(
n

k

)
(1− p+ ε)k(p− ε)n−k

k−d∑
j=0

(
n

j

)
(1− p)jpn−j .

We can view the second summation as the probability that the player with success
rate p loses at most k− d games, while

(
n
k

)
(1− p+ ε)k(p− ε)n−k is the probability

that the player with success rate p− ε loses exactly k games. Thus, the combined
expression gives the probability of winning by at least d games by the former player.

Note that this property guarantees that it suffices to deal with fd(n, p, ε) with
p ≥ (1 + ε)/2. Sometimes, we use the short notation fd instead of fd(n, p, ε).

Remark 1 : The definition of fd can be extended to every real p by (1), and
obviously, the extended function remains symmetric. This can be proven by taking
the Taylor expansion of the polynomial fd about (1 + ε)/2 which has only terms
with even exponents. Similarly, the statement holds true for any entire function
(whose Taylor series converges to the function itself everywhere).

Remark 2 : Note that the degree of polynomial fd in p is 2n. Moreover, (1)
shows that pd(1− p+ ε)d is always a factor of fd independent of n. By focusing on
the highest powers of p (including sign) in (1), it can be proven that the leading
coefficient of fd(n, p, ε), as a polynomial in p, is (−1)dcn,d with

cn,d =
(

2n− 1
n− d

)
, n ≥ d,

independent of ε. It follows, for instance, that cn,0 = cn,1 =
(

2n
n

)
/2.

For d = 0, by more detailed calculations, we can get that

f0(n, p, ε) = (1 + ε)n − n(1 + ε)n−1(1 + nε)p
+n

4 (1 + ε)n−2
(
ε2n3 + 6εn2 − ε2n− 2εn+ 6n− 2

)
p2 + · · ·+

(
2n−1
n

)
p2n.

However, as we will see, it is more important to have the expansion of fd about
p = (1 + ε)/2 rather than about p = 0.

3. The probability of a tie and exact point spread

If p = 1 then the probability of a tie is (1 − ε)n. In general, we have that the
probability of a tie is

T = f0(n, p, ε)− f1(n, p, ε) =
∑n

k=0

(
n
k

)
pk(1− p)n−k

(
n
k

)
(p− ε)k(1− p+ ε)n−k

=
∑n

k=0

(
n
k

)2 (p(p− ε))k ((1− p)(1− p+ ε))n−k

= ((1− p)(1− p+ ε))n
∑n

k=0

(
n
k

)2 ( p(p−ε)
(1−p)(1−p+ε)

)k
,
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and thus,

T =

=

((1− p)(1− p+ ε))n
(

1− p(p−ε)
(1−p)(1−p+ε)

)n
Pn

(
1+ p(p−ε)

(1−p)(1−p+ε)

1− p(p−ε)
(1−p)(1−p+ε)

)
, if 1+ε

2 < p< 1,(
1−ε2

4

)n (
2n
n

)
, if p = 1+ε

2 ,

(2)

with the nth Legendre polynomial Pn(x) [cf. 2]. If x < −1 then Pn(x) can be
approximated by

Pn(x) ∼ (−1)n√
2πn(x2 − 1)1/4

(−x+
√
x2 − 1)n+1/2 (3)

as n → ∞. For instance, the answer 0.1533 to question (A) can be approximated
by 0.1542 this way since p < 1 guarantees that the argument of Pn in (3) is less
than −1. With the notation

∆ = p− 1 + ε

2
, (4)

we get the approximation of the answer T

T ≈
(

∆− 1
2

)2n
(

1−
(
∆ + 1

2

)2(
∆− 1

2

)2
)n

Pn

(
− 1

4∆
−∆

)

for a small ε if ∆ > 0. Of course, we can also use the approximation (3) for the last
factor. For example, with n = 12, p = 0.75, and ε = 0.01, we get that the exact
value is 0.1859 while the above approximation with (3) results in 0.1857. Also note
that by (2), we have that

f0(n, (1 + ε)/2, ε)− f1(n, (1 + ε)/2, ε) ∼ (1− ε2)n/
√
nπ

for ∆ = 0 and n→∞.

We can generalize the above approach for any difference d ≥ 0. By using the
hypergeometric function 2F1 [cf. 2], we obtain

Theorem 3.1 : The probability fd(n, p, ε)−fd+1(n, p, ε) of an exact point spread
of d is

((1− p) (1− p+ ε))n
(

p

1− p

)d(n
d

)
2F1

(
d− n,−n, 1 + d;

p (p− ε)
(1− p) (1− p+ ε)

)

if (1 + ε)/2 ≤ p < 1.

For instance, Theorem 3.1 gives the answer f0(12, 0.75, 0.10)−f1(12, 0.75, 0.10) =
0.1533 to question (A). Similarly, f2(12, 0.75, 0.10) − f3(12, 0.75, 0.10) = 0.1676
answers question (C).
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4. Random walk approach

Assume that in the shooting competition the players shoot in an alternating fash-
ion. Let Xi be 1 or 0 if the first player scores or misses his free throw in the ith
trial. We define Yi similarly. Then X =

∑n
k=1Xi and Y =

∑n
k=1 Yi. We can model

the problem with a random walk which has step sizes Xi − Yi, i = 1, 2, . . . , n: the
walk moves one step to the right or left if only the first or the second player scores,
respectively, and stays in place if either both or none of the players score. With
P = p(1− q), Q = q(1− p), and q = p− ε, we have that

P (X−Y = k) = [zk](Pz+(1−P −Q)+Q/z)n = [zn+k](Pz2 +(1−P −Q)z+Q)n

where [zk]g(z) stands for the coefficient of the term zk in the (Laurent) power
series expansion of g(z) about 0. By adding the coefficients for k = d, d+ 1, . . . , n,
we can obtain fd(n, p, ε). Formally, in terms of a Laurent series with an essential
singularity at 0, we can write that

fd(n, p, ε) = Pn [zn+d]
(

1 +
1
z

+
1
z2

+ . . .

)(
z2 +

1− P −Q
P

z +
Q

P

)n
.

We note, however, that this approach results in a double sum for fd and thus,
offers little or no improvement over (1) unless some computer algebra system is
easily available for extracting coefficients. In some cases though it might be helpful.
For example, coefficient extraction is easy when p = q = 1/2 and thus, ε = 0,
P = Q = 1/4, and identity (15) follows immediately. In another example, we can
get a good approximation for the probability of a tie T = P (X − Y = 0) (cf. (2))
by using standard facts regarding random walks. In fact, [3, Proposition VII. 10]
suggests

T ∼

(
1− (

√
P −

√
Q)2

)n+1/2

2(PQ)1/4
√
πn

as n→∞ by using the asymptotic number of “bridges” (and its generalization for
finding the probability that a random walk of length n is a bridge from altitude 0 to
0), hence providing an approximation for T which looks simpler than the one given
in Section 3. For example, in this way we get the approximate answer 0.1542 to (A).
Note the difference in the rate of decrease of the approximated T as n grows: it is
exponential if p 6= q and of order 1/

√
n if p = q. In fact, T decreases as n→∞, as

it can be showed in a way Lemma 5 of [7] is proven according to Wagon [8]. Author
conjectures that for n ≥ 5, p = (1 + ε)/2 switches from being the location of the
minimum of T to that of the maximum as ε grows. Of course, the symmetry of T ,
i.e., f0(n, p, ε)− f1(n, p, ε), in p about (1 + ε)/2 follows by Theorem 2.1, and this
yields that this particular location gives either a (local) minimum or maximum.

5. Approximation by normal

With some reasonable bounds on the number of trials n and success rates p and
q = p−ε with ε > 0 for Players 2 and 1, respectively, we first approximate fd(n, p, ε)
for d ≥ 1 and then extend the range of the approximation for d ≤ 0. As we observed
above, we can restrict our attention to the range p ≥ (1 + ε)/2.
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LetX and Y represent the number of successful shots made by Players 2 and 1 re-
spectively. Clearly, X and Y are independent, binomially distributed random vari-
ables, X ∼ N [µ = np, σ =

√
np(1− p)] and Y ∼ N [µ = nq, σ =

√
nq(1− q)] ap-

proximately, even for small values of n, as long as 9p/(1−p) ≤ n, i.e., p ≤ n/(n+9),
although this condition can be relaxed in practice. Therefore, the distribution of
X − Y is approximately N [µ = n(p− q) = nε, σ =

√
n (p(1− p) + q(1− q))].

To answer (A), (B), (C), and (D) we need the probabilities P (X−Y = 0), P (X−
Y ≥ 1), P (X −Y = 2), and P (X −Y ≥ 2), respectively. For example, f1(n, p, ε) =
P (X − Y ≥ 1) can be approximated by

1− Φ

(
0.5− nε√

n(p(1− p) + q(1− q))

)
(5)

using the so-called continuity correction. We can use a simple and fairly accurate
approximation for the normal distribution function

Φ(x) ≈ 0.5 + 0.1x(4.4− x), for 0 ≤ x ≤ 2.2.

In fact, it is good to two decimal places.

We consider
√
n(p(1− p) + q(1− q)) from equation (5). We first take p(1− p) +

q(1 − q) and rewrite it in terms of the fixed ε = p − q and then express it as a
function of ∆ = p− (1 + ε)/2. We get that

√
n(p(1− p) + q(1− q)) =

√
n
2

(
1− 4

(
p− 1+ε

2

)2 − ε2
)

≈
√

n
2

(
1− 2

(
p− 1+ε

2

)2 − 1
2ε

2
)

if ε and ∆ are small, more precisely if
√
n(∆4 + ε4) is small.

We can use a quadratic or finer approximation of the argument of Φ about p =
(1+ε)/2 in (5). We proceed with the quadratic approximation. Let us assume that
2ε∆4

√
2n is small. This assumption will guarantee that the above approximation

introduces only negligible errors when we replace x by x1, x2, and xd below. We
set

x1 =

(
0.5

√
2
n
− ε
√

2n

)(
1 + 2

(
p− 1 + ε

2

)2

+
ε2

2

)
≤ 0,

for 0.5/ε ≤ n ≤ 2/ε2 and use

1− Φ(x) ≈ 0.5 + 0.1(−x)(4.4 + x) (6)

with x = x1. This provides us with a quadratic approximation in x1. Note that to
answer (D), we need a slight modification of x1. We use approximation (6) with
setting x to

x2 =

(
1.5

√
2
n
− ε
√

2n

)(
1 + 2

(
p− 1 + ε

2

)2

+
ε2

2

)
≤ 0
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for 1.5/ε ≤ n ≤ 2/ε2. In general, for a difference of d points we set

xd =

(
(d− 0.5)

√
2
n
− ε
√

2n

)(
1 + 2

(
p− 1 + ε

2

)2

+
ε2

2

)
≤ 0 (7)

for (d− 0.5)/ε ≤ n ≤ 2/ε2.
We use the above quadratic approximation (6) to fd(n, p, ε) about (1 + ε)/2. For

example, for d = 1 we get that

the constant coeff:
(

0.5− 0.311127√
n
− 0.05

n

)
+ ε (0.622254

√
n+ 0.2)

−ε2
(

0.2n+ 0.155563√
n

+ 0.05
n

)
+O

(
ε3
) (8)

the coeff of
(
p− 1+ε

2

)2 : −
(

0.622254√
n

+ 0.2
n

)
+ ε (1.24451

√
n+ 0.8)

−ε2
(
0.8n+ 0.1

n

)
+O

(
ε3
) (9)

Note that if d ≤ 0 then xd < 0 in (7), and we need only the condition that n ≤ 2/ε2.
In general, we have the following

Theorem 5.1 : For an arbitrary integer d, we get the approximation fd(n, p, ε) ≈
c0 + c2 (p− (1 + ε)/2)2 with

c0 =
(

0.5− 0.311127(2d−1)√
n

− 0.05(4d(d−1)+1)
n

)
+ ε (0.622254

√
n+ 0.2(2d− 1))

−ε2
(

0.2n+ 0.155563(2d−1)√
n

+ 0.05(4d(d−1)+1)
n

)
+O

(
ε3
) (10)

c2 = −
(

0.622254(2d−1)√
n

+ 0.2(4d(d−1)+1)
n

)
+ ε (1.24451

√
n+ 0.8(2d− 1))

−ε2
(

0.8n+ (2d−1)2

10n

)
+O

(
ε3
) (11)

provided that (d−0.5)/ε ≤ n ≤ 2/ε2 and 2ε∆4
√

2n is small with ∆ = p−(1+ε)/2.

Of course, if p is close to (1 + ε)/2 and ε is small then the constant term
0.5− 0.311127(2d− 1)/

√
n− 0.05 (4d(d− 1) + 1)/n suffices in order to get a good

approximation of fd.

Note that using a higher degree approximation in (5) will not change the shape
of the approximating function (7) since the Maclaurin series of 1/

√
a− y, a > 0, in

y has only positive coefficients. Thus, it will not help in finding a better match for
fd.

The last approximation (11) explains the changes in fd, mentioned in Section 1,
if we change p but keep n, ε, and d fixed.

The tables below show the exact probabilities and their approximations via (10)
and (11) after dropping the terms with O(ε3). Note that in some cases the condition
(d−0.5)/ε ≤ n is violated and thus, the approximation fails to reach an acceptable
accuracy.
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Table 1. The values of f1(12, p, ε) with p = 0.55, 0.60, . . . , 0.80 and ε = 0.01, 0.05, 0.10

p ε = 0.01 ε = 0.05 ε = 0.10
exact approximation exact approximation exact approximation

0.55 0.4386 0.4290 0.5176 0.5177 0.6151 0.6171
0.60 0.4376 0.4280 0.5178 0.5179 0.6156 0.6176
0.65 0.4359 0.4263 0.5180 0.5182 0.6173 0.6193
0.70 0.4332 0.4238 0.5185 0.5188 0.6203 0.6220
0.75 0.4291 0.4206 0.5190 0.5195 0.6249 0.6258
0.80 0.4228 0.4166 0.5198 0.5203 0.6317 0.6308

Table 2. The values of f2(12, p, ε) with p = 0.55, 0.60, . . . , 0.80 and ε = 0.01, 0.05, 0.10

p ε = 0.01 ε = 0.05 ε = 0.10
exact approximation exact approximation exact approximation

0.55 0.2864 0.2191 0.3579 0.3242 0.4539 0.4429
0.60 0.2835 0.2147 0.3563 0.3223 0.4536 0.4426
0.65 0.2782 0.2073 0.3531 0.3185 0.4527 0.4417
0.70 0.2699 0.1967 0.3479 0.3128 0.4509 0.4403
0.75 0.2578 0.1830 0.3401 0.3053 0.4482 0.4383
0.80 0.2400 0.1662 0.3283 0.2959 0.4439 0.4357

6. Poisson approximation

If p − ε is close to 1 then the approximation (5) by normal distribution does not
work except for large n. In this case one might try to use approximation by Poisson
distribution for n − X and n − Y , respectively. For instance, if p − ε ≥ 0.90 and
n(1−p+ε) ≤ 10 then n−X ∼ Poisson[n(1−p)] and n−Y ∼ Poisson[n(1−p+ε)],
approximately. Therefore, the distribution of X − Y can be approximated by the
distribution of the difference of two independent Poisson random variables n − Y
and n − X. The difference of two Poisson random variables follows a Skellam
distribution. We have that

fd(n, p, ε) ≈ P (X − Y ≥ d) = P ((n− Y )− (n−X) ≥ d)

=
∑

k≥d e
−(µ1+µ2)

(
µ1

µ2

)k/2
Ik(2
√
µ1µ2)

with µ1 = n(1 − p + ε) and µ2 = n(1 − p), and Ik(x) being the modified Bessel
function of the first kind [see 2]. For example, we get that f2(12, 0.95, 0.05) = 0.2247
while the above approximation yields 0.2283.

7. Optimization

One might wonder what are the largest possible probabilities in (B) and (D). Note
that using the probabilistic context, fd(n, p, ε) increases as n → ∞ and ε > 0,
d ≥ 0, and p, ε ≤ p ≤ 1, are kept fixed. Clearly,

f0(n, p, 0) = 1− f1(n, p, 0), (12)

and its value, (1 + T )/2, can be determined by identity (2), possibly using the
approximation (3) for T . By Remark 2, fd(n, p, ε) goes to∞ for d even and to −∞
for d odd as |p| grows indefinitely.

It is more interesting to look for

max
ε≤p≤1

fd(n, p, ε)

for different values of d with n and ε kept fixed. Of course, by symmetry, we can,



April 6, 2010 15:30 Journal of Statistical Computation & Simulation pointspread˙rev

On approximating point spread distributions 9

as we will do, focus on the range (1 + ε)/2 ≤ p ≤ 1.

We observe that the shape of fd about p = (1 + ε)/2 changes from concave up
to concave down as d increases. For ε = 0, the shape of f0 is that of a distorted
parabola opening up which is fairly flat about its vertex for all n ≥ 1. The shape
becomes concave down at p = 1/2 for d ≥ 1. For other values of ε this change at
p = (1 + ε)/2 happens at a higher value of d depending on n and ε, too. For exam-
ple, with ε = 0.3, ∂2

∂p2 fd(12, 0.65, 0.3), ∂2

∂p2 fd(13, 0.65, 0.3), and ∂2

∂p2 fd(16, 0.65, 0.3)
become negative at d = 4, 5, and 6, respectively.

0.2 0.4 0.6 0.8 1 1.2 1.4
p

0.8

0.9

1.1

1.2

f

(a) f0(12, p, 0.3)

-0.2 0.2 0.4 0.6 0.8 1 1.2
p

0.505

0.51

0.515

0.52

f

(b) f1(12, p, 0.05)

Figure 1. The largest probabilities in two examples with the maximum locations emphasized

As a consequence, typically, the maximum occurs at p = 1 when d is small (cf.
Figure 1(a), f0(12, p, 0.3)). However, when it is not the case, the approximation
methods of Sections 5 and 6 can hardly help. In fact, for n = 12, ε = 0.05, and
d = 1 the optimum is found around p = 0.8883, and the probability appears to be
sharply decreasing as p increases from this value on (cf. Figure 1(b), f1(12, p, 0.05)).
On the other hand, as d grows, it appears that the maximum occurs at p = (1+ε)/2.

We prove only

Theorem 7.1 : The polynomial f0(n, p, 0) is concave up, and thus, it takes its
minimum at p = 1/2. Its maximum is taken at 0 and 1.

Proof : By the notation (4), we get that

fd(n, p, ε) =

=
((

1−ε
2 −∆

) (
1+ε

2 −∆
))n ∑n

k=d

(
n
k

) (∆+ 1+ε

2
1−ε

2
−∆

)k ∑k−d
j=0

(
n
j

) (∆+ 1−ε

2
1+ε

2
−∆

)j
.

With ε = 0, this simplifies to

(1− 2∆)2n

22n

n∑
k=d

(
n

k

)(
2∆ + 1
1− 2∆

)k k−d∑
j=0

(
n

j

)(
2∆ + 1
1− 2∆

)j
, (13)

which can be expanded as a function of ∆2

fd(n, p, 0) =
n∑
k=0

c2k(n, d)∆2k

according to Theorem 2.1. In general, determining c2k(n, d) requires the evaluation
of a triple sum according to (13). On the other hand, we can easily derive that the
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coefficient of the term ∆2 = (p− 1/2)2 is

c2(n, d) =
1

22n−2

n∑
k=d

k−d∑
j=0

(
n

k

)(
n

j

)(
2(k + j − n)2 − n

)
.

For instance, c2(n, n) = −n/22n−2 < 0 follows immediately. With some calculations
and simplifications, we obtain the recurrence relation

c2(n, d+ 1) = c2(n, d)− 1
22n−2

n∑
k=d

(
n

k

)(
n

k − d

)(
2(2k − d− n)2 − n

)
, for d ≥ 0,

with the initial condition

c2(n, 0) =
1

22n−2

(
2n− 2
n− 1

)
∼ 1√

π(n− 1)
(14)

which already guarantees the convexity of f0(n, p, 0) at p = 1/2. We note that
(14) follows from the observation (12) which implies that c2(n, 1) = −c2(n, 0). In
a similar fashion, by (2) and (12), c0(n, 1) = 1− c0(n, 0) implies that

f0(n, 1/2, 0) = c0(n, 0) =
1
2

(
1 +

(
2n
n

)
22n

)
. (15)

With considerably more calculations, we obtain all coefficients

c2k(n, 0) =
1

22n−2k

(
2k − 1
k

)(
2n− 2k
n− k

)
, k = 1, 2, . . . , n, (16)

which proves the convexity of f0(n, p, 0) everywhere. The minimum of f0(n, p, 0)
is taken at p = 1/2, while the locations of the maximum are 0 and 1 since the
function is symmetric about p = 1/2 by Theorem 2.1.

Note that (16) can be verified by finding that

(2(n+ 2)N − (2n+ 1))
(
2(n+ 2)N2 − (2n+ 3)(1 + 4∆2)N + 8(n+ 1)∆2

)
is an annihilating operator [cf. 4, 5], using Zeilberger’s algorithm [4] by calling the
Zb function of the Zb or the certificate finding FindRecurrence function of the
MultiSum [5] Mathematica package, for

n∑
k=1

1
22n−2k

(
2k − 1
k

)(
2n− 2k
n− k

)
∆2k=

(
2n
n

)
22n+1

(
−1 +2F1

(
1
2
,−n, 1

2
− n, (2∆)2

))
, (17)

with N being the forward shift operator with respect to n. It also annihilates the
double sum f0(n, p, 0) − c0(n, 0) which can be numerically verified for particular
values of n. (Note that the left factor of the annihilator changes to N − 1 if we
include the constant term, indicating that the right factor annihilates the sums up
to an inhomogeneous part which is free of n; in fact, it is (1 − 4x2)/2.) The sym-
bolic verification can be effectively done by the latest version of the Mathematica
package Sigma as it was pointed out by Schneider [10]. The proof is complete after
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comparing the initial values of (17) and the double sum f0(n, p, 0)− c0(n, 0) based
on (13).

We note that for d = 0, (13) simplifies to

f0(n, p, 0) =
(1− 2∆)2n

22n

n∑
k=0

n∑
j=0

(
n

k

)(
n

k + j

)(
2∆ + 1
1− 2∆

)2k+j

.

We add that (12) also implies that c2k(n, 1) = −c2k(n, 0), k ≥ 1, and thus,
f1(n, p, 0) becomes concave down at p = 1/2.

Note that for d = n it is straightforward to prove

Theorem 7.2 : The roots of ∂
∂p fn(n, p, ε) are 0, (1 + ε)/2, and 1 + ε with multi-

plicity n− 1, 1, and n− 1, respectively. Thus,

max
ε≤p≤1

fn(n, p, ε) = fn(n, (1 + ε)/2, ε).

We note that very recently the problem of finding

max
n

(
1− f0(n, p, ε)

)
appeared in [6, 7] with the pairs p = 0.51, ε = 0.01, and p = 0.101, ε = 0.001.
Here 1 − f0(n, p, ε) corresponds to the probability that the weaker player scores
more than the stronger one. The constant term approximation (10) of Theorem 5.1
and numerical evidence suggest that the optimum value n and the corresponding
probability 1 − f0(n, p, ε) must be close to 1/(2ε) and 0.5 − 0.88

√
ε, respectively,

for any sufficiently small ε > 0 and |∆|. We observe that only ε seems to matter
as long as |∆| is small, in agreement with our findings regarding (B) and (D). The
results can be easily generalized for 1−fd(n, p, ε) with the difference d ≤ 0, i.e., the
probability that the weaker player scores at least −d+ 1 ≥ 1 points more than the
stronger one, since in this case the approximation (7) works even for small values
of n. From the point of view of the weaker player, with conveniently switching the
sign of d, we get that the maximum probability that the weaker player wins by
more than d ≥ 0 points and the corresponding n are close to 0.5− 0.88

√
ε(1 + 2d)

and (1 + 2d)/(2ε), respectively, for any sufficiently small ε > 0 and |∆|.

On another note, Wagon [8] conjectures that f0(n, p, ε), ε ≤ p ≤ 1, takes its
minimum at (1 + ε)/2. In general, for fd(n, p, ε) with d ≥ 1, author believes that
p = (1 + ε)/2 switches from the location of the maximum to that of the minimum
as ε grows, leaving the original maximization problem open.

8. The absolute spread difference for p = q = 1/2

We can consider the absolute spread difference between X and Y. Here we deal
with the special case p = q = 1/2 which implies ε = 0. Since X − Y ∼ N [µ =
0, σ =

√
n/2] approximately, we get that |X − Y | is approximately of half-normal

distribution, i.e., the distribution of the absolute value of a normally distributed
random variable centered at zero with σ =

√
n/2. Determining the moments of
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|X − Y | raises some interesting questions involving double summations.

Theorem 8.1 : For the rth raw moment of |X − Y | we get that

mr =
n∑
k=0

n∑
j=0

|k − j|r

22n

(
n

k

)(
n

j

)
= 2

n∑
k=0

k∑
j=0

(k − j)r

22n

(
n

k

)(
n

j

)
(18)

with the particular values

m0 = 1−
(

2n
n

)
22n

,m1 =
n

22n

(
2n
n

)
,m2 =

n

2
,m3 =

n2

22n

(
2n
n

)
,m4 =

n(3n− 1)
4

,

m5 =
n2(2n− 1)

22n

(
2n
n

)
, and m6 =

n(15n2 − 15n+ 4)
8

.

Of course, E(|X − Y |2) = var(X − Y ) = n/2. We also observe that m0 =
1− P (X = Y ) = 1−

(
2n
n

)
/22n which provides us with an alternative proof of (15).

The proof of Theorem 8.1 can be accomplished by the use of the Mathematica
package MultiSum [cf. 5] or Sigma [cf. 9]. Further values of mr have been deter-
mined by Schneider [10]. Note that finding moments with even indices might be
easier since the summation variables have standard bounds if we use the first form
of mr in (18) while odd indices require the second form. The closed form for m1

was originally suggested by John Essam and derived in [5].

We note that Theorem 8.1 is in agreement with the moments of the corresponding
half-normal distribution in an asymptotic sense.
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