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Abstract

We use only the classic basic ballot result and simple combinatorial arguments to derive
the distributions of the first passage time and the number of visits in the usual random
walk model.

1. Introduction

In the usual simple ballot problem (cf. Feller (1968)), there are two candidates A and
B, and a + b voters, casting their votes one after the other in some order. Candidate
A gets a votes while B collects b votes during one of the possible

(
a+b
a

)
ordered voting

sequences with the given voting outcome. In an actual instance of the voting process,
we count the respective numbers of votes αr for A and βr for B among the first r votes,
r = 1, 2, . . . , a + b (cf. Saran and Sen (1985)). Furthermore, for −b ≤ c ≤ a, let δ

(c)
a,b

denote the number of subscripts r = 1, 2, . . . , a+ b for which αr = βr + c. For example,
δ
(0)
a,b counts the number of times the vote counts coincide (after the first vote has been

cast).

Theorem 1 (Ballot Theorem). Assuming that all
(

a+b
a

)
orderings of the votes are equally

likely and a ≥ b, we have

P (δ
(0)
a,b = 0) = P (αr > βr, r = 1, 2, . . . , a+ b) =

a− b
a+ b

.

There are many generalizations of the above theorem involving linear functions of αr and
βr in the definition of the underlying events. Here we focus on certain generalizations
of Theorem 1 that can be proven by this theorem combined with simple combinatorial
arguments.
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Voting sequences can be described by random walks. There are two usual ways of rep-
resenting a random walk. In both models, the random walk starts at (0, 0) and makes
a and b moves of the first and second types, respectively. The order of the moves of the
two types is the same in both models; however, the steps are represented differently.

In the first model, a legal move is either a right move (1, 0) or an upward move (0, 1) of
unit length. If the random walk makes a and b moves of the respective types then the
random walk ends at the point (a, b).

In the second model, in each step the random walk makes a SE-move (1,−1) or a NE-
move (1, 1) (of length

√
2). If the random walk makes a and b moves of the respective

types then it now ends at the point (a + b, b − a). In the first model horizontal steps
represent the votes for A while in the second model SE steps correspond to these votes.

We note that a simple probabilistic proof of Theorem 1 follows immediately without ap-
plying any direct combinatorial path enumeration. We use the first model and observe
that any bad path (i.e., a path with δ

(0)
a,b > 0) either starts with a vote for B, or starts

with a vote for A and will meet the line y = x at some point in the voting process. (If
one uses the second model then this line is replaced by the x-axis.) By reflecting the
first such segment with respect to this line, when beginning with a vote for B, we face
another bad path starting with a vote for A, and vice versa. Thus, the probability of a
bad path is equal to twice the probability b/(a+ b) that the voting sequence starts with

a vote for B. We immediately get that P (δ
(0)
a,b = 0) = 1 − 2b/(a + b) = (a − b)/(a + b).

We remark that proofs of the generalizations of the basic Ballot Theorem that rely on
combinatorial path enumeration often use a similar but more involved uniform parti-
tioning of the set of bad paths.

We use only the Ballot Theorem and simple combinatorial arguments to derive the
distributions of the first passage time and the number of visits in Sections 2 and 3,
respectively, in the usual random walk model.

2. First passage

The second model is visually more helpful when the focus is on the difference between the
numbers of votes. Let Xi = 1 or -1 be corresponding to a NE or a SE move, respectively,
in the second model. We define the successive partial sums S0 = 0, S1, S2, . . . , Sa+b, with
Sk =

∑k
i=1Xi, k = 0, 1, . . . , a + b, which represent the successive cumulative gains from

the perspective of candidate B, i.e., Sk = βk − αk. It can be used to analyze the first
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passage time distribution. We say that a first passage through m occurs at step k if for
the partial sums we have

S1 < m,S2 < m, . . . , Sk−1 < m,Sk = m

for m > 0, and it is defined similarly for m < 0 with all inequalities switched.

Clearly, with appropriately scaling the models (cf. Figure 1), both models can be used
for enumerating random walks of certain types.

S

T

S

T

x

Figure 1: Two representations of the same ballot sequence of 10 votes with a = 7
and b = 3 by random walks starting at (0,0) and ending at (7,3) and (10,-
4), respectively, in the two models with the directions of the legal moves
illustrated on the right of the grids. In the first model, we immediately see
that δ(0)

7,3 = 0. In the second model, we also notice that the vote counts have
not coincided; moreover, we can see that the random walk achieves first
passage through -4 at its very end. We will use this correspondence since
the first model offers the applicability of the ballot theorem.

In Figure 2 below we consider the cases (a, b) = (7, 3) and (3,7), respectively, in the first
model. Here S and T stand for start and terminal nodes, and the walk is supposed to
stay within the gray area except for its first (right) step or last (upward) step, depending
on whether a > b or a < b where a and b indicate the number of horizontal (1, 0) and
vertical (0, 1) moves of unit length, respectively. We draw a random walk with the
(dashed red) forbidden line (i.e., a line that the random walk is not supposed to touch
except at the beginning or at the end provided that a > b or a < b, respectively)
emphasized and dashed. Obviously, if we reverse a random walk by changing the role of
T and S and take the steps in reverse order, which also corresponds to a proper reflection
(cf. Figure 3) about the line y = −x, then the number of random walks with the above
stipulation (i.e., staying within the gray area except for the first or last step) are the
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same. Note that a different kind of reversal leads to the notion of a dual walk (Feller,
1968, pp.91-92).

S

T

S

T

Figure 2: Ballot problems with 7 vs. 3 votes with candidate A always leading, starting
from the first vote, and 3 vs. 7 votes with candidate B leading by the largest
margin only at the end

We can address first passage problems by reducing them to ballot problems. In fact,
based on the right panel representation of the random walk in Figure 1 and its equivalent
image in the right panel in Figure 2 reflected about the y axis and then rotated by 135◦

in the clockwise direction,

S

T

T

S

Figure 3: A random walk for the ballot problem with 7 vs. 3 votes (with A always in
the lead), and the same walk differently drawn after proper reflection

we can count

#{walks with first passage through m ≥ 1 at step 2n+m} =
m

2n+m

(
2n+m

n

)
(1)

where the last factor
(
2n+m

n

)
counts the number N2n+m,m of random walks from the

origin to the point (2n + m,m) in the second model. Indeed, we set m = b − a and
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2n+m = a+ b, i.e., a = n and b = m+n, and use the Ballot Theorem (i.e., Theorem 1)
which yields (b− a)/(a+ b)

(
a+b
a

)
= m/(2n+m)

(
2n+m

n

)
for the number of random walks

with a and b votes for the respective candidates and reaching the largest difference at
the end. In the so-called symmetric random walk model in which both moves are equally
likely at each step, this yields

Theorem 2.

P (first passage through m ≥ 1 occurs at step 2n+m) =
m

2n+m

(
2n+m

n

)
2−(2n+m).

Clearly, one can easily obtain the corresponding result for any random walk with moves
Xi = ±1, even in the asymmetric case. Typically, most sources including (Feller, 1968,
the proof of Theorem 2, p.89) derive Theorem 2 by using “a trite calculation” based on
N2n+m,m−1, N2n+m,m+1, and related probabilities (cf. (Feller, 1968, identities (7.4) and
(7.5) on p.89)) while this proof is a straightforward application of the Ballot Theorem.

We note that Addario-Berry and Reed (2008) reviews the connections between ballot-
style problems and random walks conditioned on the value of Sn and also suggests
taking the votes in reverse order for the proof of Theorem 2. Other proving techniques
are presented, e.g., the one based on the cyclic arrangements of the steps Xis due to
Dvoretzky and Motzkin (1947) that is a powerful tool in proving various generalizations.
Other forms of the Ballot Theorem are given, e.g., the hitting time theorem for left-
continuous random walks due to Kemperman (1961) which includes classical games of
chance with betting a single unit in every play.

Theorem 3 (Hitting Time Theorem, Kemperman (1961)). For a random walk starting
in k ≥ 1 with i.i.d. steps {Xi}∞i=1 satisfying Xi ≥ −1, the conditional probability that
the walk hits the origin for the first time at time n, given that it does hit zero at time n,
is equal to k/n. Equivalently, the chances that the random walk visits −k for the first
time at n is k/n of the chance that without qualification it visits −k at n.

For an elementary proof and background see van der Hofstad and Keane (2008). We
note that Theorem 3 immediately follows for random walks with moves Xi = ±1 only
by representation as a first passage problem. In fact, by counting walks based on (1) we
get that the probability of first passage to −k at step n given passage to −k at step n is

k

n

(
n

n+k
2

)/( n
n+k

2

)
=
k

n
,

since there are (n+k)/2 and (n−k)/2 moves of types Xi = −1 and Xi = 1, respectively.
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3. Number of visits

Now we turn to questions regarding the number of visits, i.e., the number of times
a random walk reaches a certain height in the second model; or in other words, how
frequently the difference in the number of votes Sk = βk − αk, k = 1, 2, . . . , a+ b, equals
a certain value is counted. We can use the above ballot correspondence to prove more
involved distributional problems and determine all probabilities P (δ

(c)
a,b = j). We pick

some relations from Saran and Sen (1985), more precisely, identities (23) of case (ii),
(16), and Theorem 9, and apply the approach from the previous section. Note that
in Saran and Sen (1985) more involved calculations are used, and the authors’ main
purpose was to derive results for generalized ballot problems rather than applying the
basic Ballot Theorem to prove them. We derive the distribution of the number of visits
to c in

Theorem 4. If c > 0 then we have that

P (δ
(0)
a,b = j) = 2j a−(b−j)

a+(b−j)

(
a+b−j

a

)/(
a+b
a

)
= 2j a−b+j

a+b−j

(
a+b−j

a

)/(
a+b
a

)
, for a ≥ b and 0 ≤ j ≤ b;

(2)

P (δ
(c)
a,b = j) = 2j−1 a−(b−(j−1))

a+(b−(j−1))

(
a+b−(j−1)

a

)/(
a+b
a

)
= 2j−1 a−b+j−1

a+b−j+1

(
a+b−j+1

a

)/(
a+b
a

)
,

for a ≥ b+ c, and 1 ≤ j ≤ b+ 1;

(3)

and
P (δ

(−c)
a,b = j) = 2j−1 a+c−(b−c−(j−1))

a+c+(b−c−(j−1))

(
a+c+b−c−(j−1)

a+c

)/(
a+b
a

)
,

= 2j−1 a+2c−b+j−1
a+b−j+1

(
a+b−j+1

a+c

)/(
a+b
a

)
,

for a ≥ b− c ≥ 0 and 1 ≤ j ≤ b− c+ 1.

(4)

Note that identity (2) yields Theorem 1 with j = 0 as a special case, and it gives the
distribution of all paths according to the number of meeting points with the line y = x
excluding the starting point S. (By convention, we always exclude the starting point
when counting the meeting points.) A lovely application of this distribution with a = b
can be found in Zagier (1990) in which the distribution is derived by using its generating
function.

We prove identities (2) and (3), and show that (4) can be reduced to an application
of (3). In addition, the proof of Theorem 5 illustrates that identity (3) can be further
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reduced to (2).

Note that the distribution of δ
(c)
a,b in the missing case with a − b < c ≤ a can be easily

derived by using the notion of the dual path (cf. (Feller, 1968, pp.89-90)) and (4).
(Sometimes, taking the dual is referred to as a rotation.) For example, we obtain that

P (δ
(c)
a,b = a− c+ 1) = P (δ

(a−b−c)
a,b = a− c+ 1) =

2a−c(
a+b
a

) .
If a = b then we cannot apply formula (3) and end up using this approach based on (4).

Proof of Theorem 4.

Proof of identity (2). We may assume that j ≥ 1. We borrow the notion of the
representative path from (Feller, 1968, III.7 Maxima and first passages, p.90) and adapt
its proof of the fact that the probability of the rth return to the origin occurs at epoch
n is given by the probability that the first passage through r occurs at epoch n− r (cf.
(Feller, 1968, Theorems 2 and 4, pp.89-90)). A path from S = (0, 0) to T = (a, b) with

δ
(0)
a,b = j is said to be representative if all segments are below the line y = x, and there

are exactly j meetings with this line. In this case, the representative path consists of j
sections with endpoints on y = x, and 2j different paths can be constructed by mirroring
the sections on this line and still satisfying δ

(0)
a,b = j.

From the representative path, we remove the j moves that end on this line; thus, we
obtain a new path with δ

(0)
a,b−j = 0. The procedure can be reversed by inserting j upward

moves, one at each point where the path leaves the y = x − i, i = 1, 2, . . . , j, lines for
the last time. Clearly, for the number of representative paths after the removals we get(

a+b−j
a

)
P (δ

(0)
a,b−j = 0) = (a − b + j)/(a + b − j)

(
a+b−j

a

)
by Theorem 1, and the proof is

complete.

Proof of identity (3). Note that the probability in (3) is independent of c; thus, it
suffices to prove it for c = 1 and show the independence for all integers c : 0 < c ≤ a− b.

The proof of identity (2) can be easily revised. We add an extra vote for B. Now we

consider all paths P ′ going from (0,0) to (a, b+ 1) with δ
(0)
a,b+1 = j. If the first vote cast

is for B then the actual path can be viewed as a path P going from (0,0) to (a, b) with

δ
(1)
a,b = j. This operation can be reversed if one wants to construct a path P ′ from P .

Recalling the notion of representative paths for the new problem and enumerating the

7



paths P ′, we have a 2j−1 factor rather than 2j since the first vote should be for B. This
means that the first segment of P ′, until meeting the line y = x, has B in the lead. This
operation yields, via identity (2), that the number of paths with δ

(1)
a,b = j is(

a+ b

a

)
P (δ

(1)
a,b = j) =

1

2

(
a+ b+ 1

a

)
P (δ

(0)
a,b+1 = j) = 2j−1a− b− 1 + j

a+ b+ 1− j

(
a+ b+ 1− j

a

)
.

Now we are ready to prove the statement for any c : 2 ≤ c ≤ a − b. We can define a
one-to-one correspondence between paths with δ

(c)
a,b = j and δ

(c+1)
a,b = j, 1 ≤ c ≤ a− b−1:

take any path P with δ
(c)
a,b = j and identify the point where P meets the line y = x− c

for the first time. We add an extra vote for A to P at this point and remove the last
vote for A in P : we get a path with δ

(c+1)
a,b = j. Clearly, this operation can be reversed.

Proof of identity (4). We present a one-to-one correspondence between the paths

δ
(−c)
a,b = j and δ

(c)
a+c,b−c = j. To this end, with respect to the line y = x + c, we take the

mirror image of the leading segment, ending at the last meeting point with this line, of
all paths with δ

(−c)
a,b = j. The reflections yield another grid with side lengths a′ = a + c

and b′ = b − c, and paths with δ
(c)
a′,b′ = j. We illustrate this step on Figure 4, with

a = 7, b = 3, c = 1, and j = 2.

By the above correspondence and identity (3), we have that(
a+b
a

)
P (δ

(−c)
a,b = j) =

(
a′+b′

a′

)
P (δ

(c)
a′=a+c,b′=b−c = j) = 2j−1 a′−b′+j−1

a′+b′−j+1

(
a′+b′−j+1

a′

)
= 2j−1 a−b+2c+j−1

a+b−j+1

(
a+b−j+1

a+c

)
.

S

Ty
=
x

+
c

a

b
c

S

T

y
=
x
−
c

c

a′ = a+ c

b′ = b− c

Figure 4: For (a, b) = (7, 3), visits to y = x + 1 vs. visits to y = x − 1 with c = 1,
a′ = a+ c and b′ = b− c
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It is worth noting the surprising connection between identities (2) and (3) that we state
as a theorem of independent interest and present a short proof based on taking the
partial dual of the corresponding paths.

Theorem 5. We have for 0 < c ≤ a− b and 1 ≤ j ≤ b+ 1 that

P (δ
(c)
a,b = j) = P (δ

(0)
a,b = j − 1).

Proof of Theorem 5. We consider a path P that visits the line y = x− c for the last
time at the point (d+c, d) for some integer d > 0. We define a one-to-one correspondence

between the paths with δ
(c)
a,b = j and δ

(0)
a,b = j − 1. To this end, we reverse the moves

of the segment from (0,0) to (d + c, d), i.e., we take the dual (Feller, 1968, pp.91-92) of
this segment, and recombine it with the unchanged portion of P starting at (d + c, d)
and ending at (a, b) to form the path P ′. It is obvious that P ′ has j − 1 meeting points
with the line y = x as the image of the point (d + c, d) of P becomes (0,0) in P ′ and
thus, being the starting point, it will not count as a meeting point. For another path P
we get a different P ′, and each path with δ

(0)
a,b = j − 1 will be encountered as a P ′. Note

that this proof can replace the above proof of identity (3).

We add that there are other simple consequences of the Ballot Theorem. For example,
for m ≥ 0, another application of Theorem 1 yields

P (δ
(−m)
n,n+m = 1) =

m

2n+m
=
n+ 2m− (n+m)

n+ (n+m)
,

i.e., the special case of (4) with a = n, b = a+m, c = m, and j = 1.

Acknowledgement. The author wishes to thank Gregory P. Tollisen for helpful sugges-
tions and comments.
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