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Abstract We present applications to a fairly general criterion to obtain divisibility

properties of a sequence de�ned by a linear recurrence with coe�cients satisfying

some divisibility patterns. Let �p(m) denote the exponent of the highest power of

a prime p which divides m. This number is often referred to as the p-adic order of

m. We determine �p

�P
1

k=0

�
n

k p

�
a
k
�
in terms of n for an integer a by the method

which o�ers insight into the structure of the problem without explicitly calculating

the coe�cients of the related recurrence. We �nd that the p-adic order of these sums

depends on �p(a+ 1) for a prime p � 3 and on �2(a� 1) for p = 2:

1. INTRODUCTION

The motivation of this paper is to extend the use of a method to character-
ize divisibility properties of combinatorial quantities (see e.g., [1] and [2]).
We �nd linear recurrences that are satis�ed by the quantities regarded as
sequences to prove divisibility properties.

Recurrences are most often used to calculate the successive terms of a
sequence. The approach presented here, however, does not aim at the explicit
calculation but at the determination of the recurrences.

There are many di�erent ways of de�ning a sequence in terms of recur-
rence relations. Finding recurrences relevant to the divisibility properties
might be referred to as \creative recursion." The interested reader can �nd
examples for this approach in [5] as linear and nonlinear recurrences are ap-
plied to the Fibonacci numbers. We note that a power series based analysis is
outlined in [3] to discuss various congruential properties of sequences de�ned
by a linear recurrence.

We focus on linear recurrences with coe�cients and set of initial values
exhibiting characteristics that guarantee the observed divisibility property of
the sequence. This method can be carried out without explicitly calculating
the coe�cients and initial values.

We deal with a particular class of sums of the form
P1

k=0

�
n
k p

�
ak: Note

that these sums are really �nite since
�
n
m

�
= 0 for m > n: We set �p(m) = l
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if pljm but pl+1 6 j m, �p(0) =1; and �p(u=v) = �p(u)� �p(v) if both u and
v are integers, and de�ne

yn = yn(p; a) =

bn=pcX
k=0

�
n

k p

�
ak: (1)

If a � �1 (mod p) then �p(yn) becomes arbitrarily large as n increases.
Our goal is to study the rate of growth. One case in point is the study
of some divisibility properties of the Stirling numbers of the second kind,
S(N;K). They are ultimately related to yK(p;�1) as it was showed in [2]
where �p

�
S(N;K)

�
is studied for particular values N .

The main result of this paper is

Theorem. Let p be an arbitrary prime and a be an integer such that

�p(a+1) = 1 if p � 3; or a � 3 (mod 4) if p = 2: Then �p
�Pbn=pc

k=0

�
n
k p

�
ak
�
�j

n+1
p

k
� 1; and equality holds if and only if p divides n+ 1:

If p � 3 and �p(a+1) � 2 then for n � 1; �p

�Pbn=pc
k=0

�
n
k p

�
ak
�
�
j

n
p�1

k
�1;

and equality holds if and only if p� 1 divides n:

If p = 2 and �2(a � 1) = 2 then �2

�Pbn=2c
k=0

�
n
2k

�
ak
�
= n � 1 for n � 1 or

2 mod 3; and it is at least as large as n if n is a multiple of 3.

If p = 2 and �2(a� 1) � 3 then �2

�Pbn=2c
k=0

�
n
2k

�
ak
�
= n� 1:

The proof of the Theorem is based on the derivation and analysis of
recurrence relations of orders p � 1 and p for yn: Examples 2, 3, and 4
illustrate di�erent applications of the Theorem.

Remark 1. We note that if a 6� �1 (mod p) then �p(yn) = 0; n � 0: In

fact,
Pbn=pc

k=0

�
n
k p

�
ak � (a+ 1)bn=pc mod p easily follows from Lucas' Theo-

rem yielding
�
n
k p

�
�
�
bn=pc
k

�
mod p:

Previous results used in this paper are given in Section 2. We have
included the proof of our basic tool for deriving divisibility properties
(Lemma A) in Section 3 for easy reference. Some extensions (Remarks 2
and 3) of Lemma A are also included. Section 4 is devoted to the discussion
of the Theorem.

2. TOOLS

We shall need the following general
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Lemma A. (Lemma 7 in [2]) Let p be an arbitrary prime. Assume that

the integral sequence xk satis�es the recurrence

xk =
dX

i=1

cixk�i; k � d+ 1; (2)

and for some nonnegative integer m, �p(xd) = m � 0 and the initial values

xi; i = 1; 2; : : : ; d� 1; are all divisible by pm: Let �p(cd) = r � 1 and suppose

that the coe�cients ci (i = 1; 2; : : : ; d � 1) are all divisible by pr: We write

xd = �pm and cd = �pr; and set f(k) = fp(k;m; r) = m� r +
�
k
d

�
r. Then

�p(xk) � f(k); and equality holds if and only if d j k: If the modulo pr

order of � is s then xk=p
f(k) (mod pr) has period sd: In particular, for any

integer t � 1, we have xtd � ��t�1pm+(t�1)r (mod pm+tr):

The lemma helps in obtaining divisibility properties of recurrent se-
quences when the coe�cients follow some divisibility patterns (e.g., [1]). It
complements previous results that can be found, for example, in [6] and [8].
The relation between the lower bound f(k) on �p(xk) is based on the pa-
rameters �p(xd); �p(cd); and d provided �p(xi) � �p(xd) and �p(ci) � �p(cd)
for i = 1; 2; : : : ; d � 1: What is remarkable about this relation is that we do
not need the coe�cients cis and initial values xis explicitly but a proof of
their divisibility properties. This fact is utilized in the proof of the Theorem.
Some extensions of Lemma A are outlined in Remarks 2 and 3.

3. THE PROOF AND EXTENSIONS OF LEMMA A

Proof of Lemma A. Notice that ( x1
pm�r ; : : : ;

xd�1
pm�r ;

xd
pm ) � (0; : : : ; 0; �)

(mod pr), where the congruence is coordinate by coordinate. We ob-
tain xd+1 = c1xd + c2xd�1 + � � � + cdx1 � 0 (mod pm+r): Simi-
larly, xd+2; : : : ; x2d�1 � 0 (mod pm+r): On the other hand, x2d �
cdxd � ��pm+r (mod pm+2r): We �nd that (

xd+1
pm ; : : : ;

x2d�1
pm ; x2d

pm+r ) �

(0; : : : ; 0; ��) (mod pr). This pattern repeats itself; for instance, we have
(x2d+1pm+r ; : : : ;

x3d�1
pm+r ;

x3d
pm+2r ) � (0; : : : ; 0; ��2) (mod pr). The proof follows by

induction on the index k of sequence xk.

Remark 2. Note that Lemma A can be extended for linear congruential
sequences. For instance, if we replace the recurrence (2) by

xk �
dX

i=1

cixk�i (mod pm�r+b
k
dcr+u); k � d+ 1; (3)
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where u is a nonnegative integer then the lemma still holds. In the case in
which u = 0 the modular pattern of d consecutive terms closely resembles
to the one studied in the proof above. A relevant application is used in the
proof of Theorem for �p(a+ 1) � 2:

Remark 3. Lemma A can be easily extended to the case in which xi and ci
are not required to be integers but rationals. The proof is basically una�ected
by this relaxation.

Example 1. For the recurrence xk � 2xk�1+6xk�2 (mod 2b
k
2 c�1+u); k � 3;

with initial values x1 = x2 = 1 and u � 0 we obtain that �2(xk) �
�
k
2

�
� 1;

and equality holds if and only if k is even. Notice that d = 2, m = 0; and
r = 1 in this case. Similarly, by Remark 3 the recurrence 3xk � 2xk�1+6xk�2

(mod 2b
k
2 c�1+u) has the characteristics of the previous sequence regarding

divisibility by powers of 2.

4. OUTLINING THE PROOF OF THEOREM

We derive linear recurrence relations for yn+p by an application of

Lemma. For any i � 1,
�

n
m�i

�
can be expressed as a linear combination of

terms
�
n+j
m

�
; 0 � j � i; such that the linear combination

Pi
j=0 lj

�
n+j
m

�
has

integer coe�cients lj = lj(i) which depend on i and j only. In particular,

the coe�cient lj of the term
�
n+j
m

�
is (�1)i�j

�
i
j

�
:

The Lemma can be proved by induction on i or using the properties of
the Pascal triangle. We apply Lemma in the

Sketch of the proof of Theorem. We focus on the coe�cients of ak as
we express yn+p by (1). It is well known that

�
n+p
kp

�
=
Pp

i=0

�
n

kp�i

��
p
i

�
; and�

p
i

�
is divisible by p for all i : 1 � i � p� 1: Identity (1) yields

yn+p =

bn+pp cX
k=0

��
n

kp

��
p

0

�
+ � � � +

�
n

kp� p

��
p

p

��
ak: (4)

We distinguish two cases.

Case 1. p = 2 and �2(a � 1) � 1: For p = 2 and n � 0 the
summation in (4) reduces to

yn+2 = yn + 2(yn+1 � yn) + ayn = 2yn+1 + (a� 1)yn: (5)
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The proof follows by applying LemmaA if �2(a�1) = 1, i.e., a � 3 mod 4: We
substitute xn = yn�1; n � 1, and observe that x1 = x2 = 1, c1 = 2; c2 = a�1,
d = 2;m = 0, and r = 1:

If �2(a� 1) = 2 then we set zn = yn=2
n�1 for n � 0: The identity (5)

can be rewritten as

zn = zn�1 +
a� 1

4
zn�2; n � 2; and z0 = 2; z1 = 1: (6)

In general, zn is a Lucas sequence (see e.g., [7]) for any a provided �2(a �
1) = 2. Thus it is periodic with period (0; 1; 1) modulo 2. It follows that
�2(yn) = n�1 if n � 1 or 2 mod 3; and �2(yn) � n otherwise. On the other
hand, if �2(a� 1) � 3 then by taking both sides of identity (6) modulo a�1

4 ,
it follows that zn is always an odd number for n � 1. This fact proves the
remarkable pattern �2(yn) = n� 1 for n � 1:

Case 2. p � 3 and �p(a+ 1) � 1: A term-by-term summation in
identity (4) results in

yn+p = yn +

bn+pp cX
k=0

p�1X
i=1

�
n

kp� i

��
p

i

�
ak + ayn: (7)

By identities (1) and (7), Lemma, and simple calculations, it follows that

yn+p = c1yn+p�1 + c2yn+p�2 + : : : + cp�1yn+1 + cpyn (8)

where all coe�cients c1; c2; : : : cp are divisible by p. In fact, by binomial
coe�cient identities we can deduce that

cp�j = (�1)j
�
p

j

�
for 1 � j � p� 1 and cp = a+ 1: (9)

Lemma A and Remark 2 complete the proof with d = p if �p(a+1) = 1; and
with d = p � 1 if �p(a+ 1) � 2, respectively. We omit the details.

We note that if a 6� �1 mod p then identity (5) yields that yn is odd for
p = 2: Similarly, for any prime p � 3, by (8) and (9) we can derive yn �
(a+1)yn�p mod p yielding yn � (a+1)bn=pc mod p directly without using
Lucas' Theorem.

Regarding the coe�cient cj , we note that only its divisibility by p and identity
l0(i) = (�1)i were used throughout the proof. The latter one is implicitly
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applied in transforming identity (7) into (8) with cp = a + 1: Of the p
coe�cients, only cp depends on a. We have included three examples to
illustrate the use of Theorem.

Example 2. If p = 2 and a = 3 then �2(a � 1) = 1, and we obtain that
�2(yn(2; 3)) =

n�1
2 for n odd, and it is at least n

2 for n even. This identity
appeared in [1].

Example 3. The particular case in which a = �1 has been studied in [2], and
the coe�cients of recurrence (8) of order p� 1 have also been indenti�ed by
the generating function method. For a = 1 we can directly deduce yn(2; 1) =
2n�1 by carrying out the summation. For any odd prime p; we get yn(p; 1) �
2bn=pc modp:

Example 4. The Fibonacci numbers Fn = Fn�1 + Fn�2; n � 2; F0 =
0; F1 = 1; are related to the sequence yn(2; 5) by the celebrated identity
2n�1Fn =

P1
k=0

�
n

2k+1

�
5k: It follows that Fn = 21�n5�1(yn+1 � yn): Note

that �2(a � 1) = 2 and the recurrence de�ned by (6) generates the Lucas
numbers. The divisibility properties of the Lucas and Fibonacci numbers
have been extensively studied (see [3], [5], and [7] for references). A close
look at the sequence �2(yn) for small values n reveals that �2(F3n+1) =
�2(F3n+2) = 0; and �2(F3n) � 1: Note that the Theorem implies these re-
lations, for �2(yn) � n � 1 and equality holds if and only if n � 1 or
2 mod 3: Numerical evidence suggests that �2(F6n+3) = 1 and �2(F6n) � 2:
In fact, these patterns continue, and it can be showed (see e.g., [5]) that
�2(F12n+6) = 3 while �2(F12n) = �2(n) + 2.
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