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Abstract We present applications to a fairly general criterion to obtain divisibility
properties of a sequence defined by a linear recurrence with coefficients satisfying
some divisibility patterns. Let v,(m) denote the exponent of the highest power of
a prime p which divides m. This number is often referred to as the p-adic order of
m. We determine Vp( :10 (;p)ak) in terms of n for an integer a by the method
which offers insight into the structure of the problem without explicitly calculating
the coefficients of the related recurrence. We find that the p-adic order of these sums

depends on v,(a + 1) for a prime p > 3 and on vs(a — 1) for p = 2.

1. INTRODUCTION

The motivation of this paper is to extend the use of a method to character-
ize divisibility properties of combinatorial quantities (see e.g., [1] and [2]).
We find linear recurrences that are satisfied by the quantities regarded as
sequences to prove divisibility properties.

Recurrences are most often used to calculate the successive terms of a
sequence. The approach presented here, however, does not aim at the explicit
calculation but at the determination of the recurrences.

There are many different ways of defining a sequence in terms of recur-
rence relations. Finding recurrences relevant to the divisibility properties
might be referred to as “creative recursion.” The interested reader can find
examples for this approach in [5] as linear and nonlinear recurrences are ap-
plied to the Fibonacci numbers. We note that a power series based analysis is
outlined in [3] to discuss various congruential properties of sequences defined
by a linear recurrence.

We focus on linear recurrences with coefficients and set of initial values
exhibiting characteristics that guarantee the observed divisibility property of
the sequence. This method can be carried out without explicitly calculating
the coefficients and initial values.

We deal with a particular class of sums of the form ) ., ( an) a®. Note

that these sums are really finite since (:7) =0 for m >n. We set v,(m) =1
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if p'lm but pFLf m, 1,(0) = oo, and v, (u/v) = v,y(u) — vp(v) if both u and
v are integers, and define

[»/p] "
Yn = yn(p: a) = Z (kp) ak' (1)

k=0

If @ = —1 (mod p) then v,(y,) becomes arbitrarily large as n increases.
Our goal is to study the rate of growth. One case in point is the study
of some divisibility properties of the Stirling numbers of the second kind,
S(N,K). They are ultimately related to yx(p, —1) as it was showed in [2]
where v, (S (N, K )) is studied for particular values V.

The main result of this paper is

Theorem. Let p be an arbitrary prime and a be an wnteger such that
vpla+1)=11ifp >3, ora=3 (mod 4) if p=2. Thenv, ( ,E';/OPJ (k"p)a’”) >
{”THJ — 1, and equality holds if and only if p divides n + 1.

Ifp>3 andvy(a+1) > 2 then forn>1, v, ( ,En/UpJ (kp)a ) > L%J -1,

and equality holds if and only +f p — 1 divides n.
If p =2 and vy(a — 1) = 2 then vy ( ]En/ozj (Zk)a ) =n—1forn=1 or

2mod 3, and it 1s at least as large as n if n1s a multiple of 3.

If p=2 and va(a — 1) >3 then s < ,EZ/OQJ (27;)@") =n—1.

The proof of the Theorem is based on the derivation and analysis of
recurrence relations of orders p — 1 and p for y,. Examples 2, 3, and 4
illustrate different applications of the Theorem.

Remark 1. We note that if « # —1 (mod p) then v,(y,) =0, n>0. In
fact, Zln/m ( ‘p) a* = (a+ 1D)/P) mod p easily follows from Lucas’ Theo-
rem yielding (kp) = (L IépJ) mod p.

Previous results used in this paper are given in Section 2. We have
included the proof of our basic tool for deriving divisibility properties
(Lemma A) in Section 3 for easy reference. Some extensions (Remarks 2
and 3) of Lemma A are also included. Section 4 is devoted to the discussion
of the Theorem.

2. TOOLS

We shall need the following general



DIVISIBILITY PROPERTIES BY RECURRENCE RELATIONS

Lemma A. (Lemma 7 in [2]) Let p be an arbitrary prime. Assume that
the integral sequence xy, satisfies the recurrence

d
T = Z CiTh—i, k=>d+1, (2)

=1

and for some nonnegative integer m, vy(xqg) = m > 0 and the initial values
wi,i=1,2,...,d—1, are all divisible by p™. Let v,(cq) =1 > 1 and suppose
that the coefficients ¢; (i = 1,2,....d — 1) are all divisible by p". We write
rqg = ap™ and cqg = Pp", and set f(k) = fp(k.m.r) =m —7r+ L%J r. Then
vp(zr) > f(k), and equality holds if and only if d | k. If the modulo p"
order of 3 1s s then ;Uk/pf(k) (mod p”) has period sd. In particular, for any
integert > 1, we have x4 = aft~1pmtE=D7 (mod pmttn).

The lemma helps in obtaining divisibility properties of recurrent se-
quences when the coefficients follow some divisibility patterns (e.g., [1]). It
complements previous results that can be found, for example, in [6] and [8].
The relation between the lower bound f(k) on v,(xy) is based on the pa-
rameters v,(z4), Vp(cq), and d provided v,(z;) > vp(zq) and vy(c;) > vp(ca)
for+=1,2,...,d — 1. What is remarkable about this relation is that we do
not need the coefficients ¢;s and initial values z;s explicitly but a proof of
their divisibility properties. This fact is utilized in the proof of the Theorem.
Some extensions of Lemma A are outlined in Remarks 2 and 3.

3. THE PROOF AND EXTENSIONS OF LEMMA A

Proof of Lemma A. Notice that (pT—l_,]fd‘_lzfd) = (0,...,0,a)

(mod p”), where the congruence is coordinate by coordinate. We ob-
tain Tgy1 = c1Tq + c2xTg—1 + -+ + cgry = 0 (mod p™*t").  Simi-
larly, @gy2,...,224—1 = 0 (mod p™*"). On the other hand, a4

catqg = afBp™" (mod p™+32"). We find that (:E;;T e m‘;‘f;‘ , p‘ﬁ?ﬁ,‘)

(0,...,0,a0) (mod p"). This pattern repeats itself; for instance, we have

(Z“il e zf’,f;,f . p,’ﬁifg,‘) = (0,...,0,a6%) (mod p”). The proof follows by

induction on the index k of sequence xy.

Remark 2. Note that Lemma A can be extended for linear congruential
sequences. For instance, if we replace the recurrence (2) by

d
T = Z ¢;tp—; (mod p™ ="t L%JT‘"“), k>d+1, (3)
=1
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where u is a nonnegative integer then the lemma still holds. In the case in
which v = 0 the modular pattern of d consecutive terms closely resembles
to the one studied in the proof above. A relevant application is used in the
proof of Theoremfor v,(a +1) > 2.

Remark 3. Lemma A can be easily extended to the case in which x; and ¢;
are not required to be integers but rationals. The proof is basically unaffected
by this relaxation.

Example 1. For the recurrence xj, = 2x,_1+6x;_2 (mod ZL%J_H’“), k>3,
with initial values x1 = x5 = 1 and v > 0 we obtain that vo(xy) > [%J — 1,
and equality holds if and only if & is even. Notice that d = 2, m = 0, and
r = 1 in this case. Similarly, by Remark 3 the recurrence 3z, = 2x;_14+6x1_o
(mod 2L§J_1+“) has the characteristics of the previous sequence regarding
divisibility by powers of 2.

4. OUTLINING THE PROOF OF THEOREM

We derive linear recurrence relations for y,,4, by an application of

n

Lemma. For anyi > 1, ( L) can be expressed as a linear combination of

m—

terms ("+j)7 0 < j <, such that the linear combination Zf'—o l; ("+j) has
. m . . . . . . 'I_ m»
integer coefficients l; = 1;(i) which depend on i and j only. In particular,
the coefficient l; of the term (";J) is (—1)*7 (;)

The Lemma can be proved by induction on ¢ or using the properties of
the Pascal triangle. We apply Lemma in the

Sketch of the proof of Theorem. We focus on the coefficients of a* as

we express Y+, by (1). It is well known that (”:;}P) =", (kp”_) ([:)7 and

(T:) is divisible by p for all i: 1 <i < p— 1. Identity (1) yields

[ ]

i (1911 R P [

We distinguish two cases.

Case 1. p =2 and (e —1) > 1. For p = 2 and n > 0 the
summation in (4) reduces to

Yn+2 = Yn + 2(yn,—l—l - yn) + aYn = 2yn—|—l + (a — 1)% (5)
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The proof follows by applying Lemma A if v5(a—1) = 1,i.e., a = 3 mod 4. We
substitute x,, = y,,_1,n > 1, and observe that 1 = x9 =1, ¢; = 2.¢0 = a—1,
d=2,m=0,and r = 1.

If va(a — 1) = 2 then we set z, = y,,/2""! for n > 0. The identity (5)
can be rewritten as

a—1
Zn = Zn—1*+ Tzn—Q; n =2, and 20 = 2,21 = 1. (6)

In general, z, is a Lucas sequence (see e.g., [7]) for any a provided vy(a —
1) = 2. Thus it is periodic with period (0,1,1) modulo 2. It follows that
va(yn) =n—1ifn =1 or 2mod 3, and v2(y,,) > n otherwise. On the other
hand, if v5(a — 1) > 3 then by taking both sides of identity (6) modulo “F,
it follows that z, is always an odd number for n > 1. This fact proves the

remarkable pattern vo(y,) =n —1 for n > 1.

Case 2. p>3andvy(a+1)> 1. A term-by-term summation in
identity (4) results in

n+p

L P ,J p—1
Yn+p = Yn + Z Z (k}) _ l> (I) a” + alYn. )

k=0 =1

By identities (1) and (7), Lemma, and simple calculations, it follows that

Yn+p = C1Yn4p—1 + C2Yn4p—2 +...+ Cp—1Yn+1 + CplYn, (8)

where all coefficients ci.ca,... ¢, are divisible by p. In fact, by binomial
coeflicient identities we can deduce that

Cp—j = (—1)? <§) for 1<j<p—1 and ¢, =a+1. (9)

Lemma A and Remark 2 complete the proof with d = p if v,(a+1) = 1. and
with d = p — 1 if v,(a + 1) > 2, respectively. We omit the details.

We note that if ¢« Z —1 mod p then identity (5) yields that y,, is odd for
p = 2. Similarly, for any prime p > 3, by (8) and (9) we can derive y, =
(a+1)yn—p mod p yielding v, = (a+ )L7/2) mod p directly without using
Lucas’ Theorem.

Regarding the coefficient c;, we note that only its divisibility by p and identity
lo(i) = (—=1)* were used throughout the proof. The latter one is implicitly
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applied in transforming identity (7) into (8) with ¢, = a + 1. Of the p
coefficients, only ¢, depends on a. We have included three examples to
illustrate the use of Theorem.

Example 2. If p = 2 and ¢ = 3 then va(a — 1) = 1, and we obtain that
n—1

v2(yn(2,3)) = "5= for n odd, and it is at least § for n even. This identity
appeared in [1].

Example 3. The particular case in which & = —1 has been studied in [2], and
the coefficients of recurrence (8) of order p — 1 have also been indentified by
the generating function method. For @ = 1 we can directly deduce y,,(2,1) =
27~1 by carrying out the summation. For any odd prime p, we get y, (p,1) =
2ln/pl modp.

Example 4. The Fibonacci numbers F,, = F,_1 + F,,_2,n > 2, Fy =
0,F; = 1, are related to the sequence y,(2,5) by the celebrated identity
on—lp = ZZio (2,;:_1)5"’. It follows that F,, = 21757 (y,,4+1 — y,). Note
that v5(a — 1) = 2 and the recurrence defined by (6) generates the Lucas
numbers. The divisibility properties of the Lucas and Fibonacci numbers
have been extensively studied (see [3], [5], and [7] for references). A close
look at the sequence v5(y,) for small values n reveals that vo(Fs,41) =
va(Fsny2) = 0, and v2(Fs,) > 1. Note that the Theorem implies these re-
lations, for ve(y,) > n — 1 and equality holds if and only if n = 1 or
2 mod 3. Numerical evidence suggests that vo(Fg,ys) = 1 and vo(Fg,) > 2.
In fact, these patterns continue, and it can be showed (see e.g.. [5]) that
vo(Fiant6) = 3 while vo(Fi2,) = va(n) + 2.
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