ON THE PROBABILITY OF REACHING A GIVEN HEAD TO TAIL RATIO

TAMÁS LENGYEL*
Department of Mathematics
Occidental College
Los Angeles, CA 90041, USA

The head to tail ratio converges to 1 with probability one when a fair coin is flipped. We show that the limit probability of reaching the ratio \(\frac{q}{q+m} \) is \(\frac{2}{2+m} \), as \(q \to \infty \) and \(q \) and \(m \) are co-primes.

1. INTRODUCTION

We flip a balanced coin. Let \(X \) and \(Y \) denote the number of heads and tails, respectively. It is well known from the theory of random walks that the probability of ever visiting the line \(Y = X - m \) is 1 for any integer \(m \). For instance, if the line is reached when \(Y = n \) then \(X = n + m \) and the probability of this happening is \(p_n = P(Y = X - m) = \left(\frac{2n+m}{n} \right) / 2^{2n+m} \). It follows that \(1 - 1/(1 + \sum_{n=1}^{\infty} p_n) \) is the probability that the line \(Y = X - m \) is ever reached [3]. By binomial identities (cf. identities (5.72) and (5.78) in [4], p. 203), we obtain for \(|x| < 1/2 \) that

\[
\sum_{n=0}^{\infty} \binom{2n+m}{n} x^{2n+m} = \left(\frac{1 - \sqrt{1 - 4x^2}}{2x} \right)^m / \sqrt{1 - 4x^2}.
\]

If \(x = 1/2 \), then the sum is divergent, therefore the line will be reached with probability 1. We might as well be interested in calculating the probability of reaching a given ratio instead of a difference. By the theory of recurrent events [3], the probability of reaching the ratio one (or equivalently, a difference of \(m = 0 \)) is 1, though the expected number of flips needed is infinite. In this paper we discuss the extreme value of the probability of reaching a given head to tail ratio which is different from 1.

We note that the case of an unbalanced coin has been discussed in the literature ([3], Exercise 4, p. 339). In general, let \(h \) and \(t \) denote the probability of getting a head and a tail, respectively, where \(h + t = 1 \). The event that the accumulated number of heads equals \(\lambda \) times the accumulated number of tails is \textit{persistent}, i.e., it has probability one, if and only if the head/tail probability ratio, \(h/t \), is equal to \(\lambda \). Other ratios are usually not discussed.

* Present address: T. Lengyel, Dept. Math., Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
In this paper we consider the head to tail ratio X/Y for a balanced coin. We like to know how large the probability of ever reaching a given head to tail ratio, q/p, is where p and q are co-primes, i.e., the ratio q/p is given in lowest terms. We assume that $q < p$, since for a balanced coin, the ratios q/p and p/q can be reached with the same probability. We set $r = p + q$.

Numerical evidence suggests that the second largest probability is around $2/3$ and it does not exceed $2/3$. Hence there is a gap between 1 and the second largest probability of reaching a given ratio q/p. We prove that for every positive ϵ and integer m, this probability is less than $\frac{2}{2+m} + \epsilon \leq \frac{2}{3} + \epsilon$ for ratios of form $\frac{q}{p} = \frac{q}{q+m}$ with large values of q, where q and m are co-primes. Actually, the limit probability is $\frac{2}{2+m}$. Let $u(p, q) = \sum_{n=1}^{\infty} \left(\frac{r_n}{q_n}\right)^{2-rn}$ be. The probability of ever reaching the ratio q/p is $w(p, q) = 1 - \frac{1}{1+u(p, q)}$. The infinite series $\sum_{n=1}^{\infty} \left(\frac{r_n}{q_n}\right)^{2-rn}$ diverges if $p = q$, and it converges otherwise.

Note, that instead of the head to tail ratio we might consider the head to total ratio. The head to tail ratio 1 corresponds to the head to total ratio $1/2$.

2. The result

Let $\gcd(q, m)$ denote the greatest common divisor of the positive integers q and m. We prove

Theorem. $\lim_{q \to \infty} w(q+1, q) = 2/3$, and in general, for every fixed $m \geq 1$,

$$\lim_{q \to \infty, \gcd(q, m) = 1} w(q+m, q) = \frac{2}{2+m}.$$

Theorem 1 shows the somewhat surprising fact that $u(p, q)$ is not a continuous function of the ratio q/p. To illustrate this, we compare two ratios that are close. Say, the first pair is $(q+1, q)$, i.e., $m = 1$, while the other is $(q+2, q)$, with $m = 2$. By selecting a sufficiently large odd q, the two ratios can be arbitrarily close, though the probabilities of reaching them stay apart since $w(q+1, q) \approx 2/3$, while $w(q+2, q) \approx 1/2$.

In this paper we use the following notations and assumptions.

Let m be a fixed positive integer. Assume that $p = q + m$, i.e., $r = 2q + m$, such that $\frac{m^2}{2p} < 1$.

From now on, $c_1(p, m, n), c_2(p, m, n)$, and $c_3(p, m, n)$ denote bounded functions of the variables p, m, n. Similarly, $c_4(p, m, N), c_5(p, m, N), c_6(p, m, N), c_7(p, m, N), c_8(p, m, N), c_9(p, m, N)$, and $c_{10}(p, m)$ are bounded functions of the variables indicated in parentheses.
Lemma 1 utilizes the Stirling formula in order to asymptotically evaluate \(g(p, q, n) = \binom{r_n}{qn} 2^{-n} \).

It will be applied to the sum \(u(p, q) = \sum_{n=1}^{\infty} g(p, q, n) \).

Lemma 1. In addition to the previous conditions on \(p, q, \) and \(m \), let \(q > m \) be. Then

\[
g(p, q, n) = \left(\frac{1}{2} \frac{p - q}{p - q} \right)^n \sqrt{2 \pi \frac{p}{2(p - q)}} \sqrt{\frac{1}{n!} \left(1 + c_1(p, q, n) \frac{1}{pn} \right)}.
\]

We omit the proof of Lemma 1 but note that it can be proved similarly to the asymptotical formula

\[
\binom{(a + b)n}{an} \sim \frac{(a + b)^{n(a + b) + 1/2}}{a^{n+1/2} b^{n+1/2}} \frac{1}{\sqrt{2\pi n}}
\]

for positive integers \(a \) and \(b \) (cf. [1], Exercise 2, p. 292).

By introducing the notation \(\frac{1}{2} \frac{p}{p} = \frac{1}{2} - \epsilon \), we get \(\epsilon = \frac{m}{2p} \) and \(2p\epsilon^2 = \frac{m^2}{2p} < 1 \). Lemma 1 yields

\[
g(p, q, n) = \sqrt{\frac{2}{\pi} \frac{1}{\sqrt{p}}} \left(1 - 2\epsilon^2 + c_2(p, m, n)\epsilon^4 \right)^{pn} \sqrt{n!} \left(1 + c_1(p, m, n) \frac{1}{pn} \right) \left(1 + 2\epsilon^2 + c_3(p, m, n)\epsilon^4 \right).
\]

We set \(S_N(p, q) = \sum_{n=1}^{N} \binom{r_n}{qn} \frac{1}{2^n} \). The Theorem will be proven in three steps. We shall need Lemmas 2 and 3 to approximate the sum \(u(p, q) \). We select a large \(N \) in identity (2) to get a close approximation to \(u(p, q) = \sum_{n \geq 1} g(p, q, n) \) by the finite sum \(S_N(p, q) \). Next, we need a sufficiently large \(p \) in equation (3) to approximate \(S_N(p, q) \) by another sum which is easier to calculate. Formula (4) suggests that we choose large \(p \) and \(N \) in order to have a meaningful approximation when using Euler’s formula. The proof follows as we combine identities (2) and (5).

By Lemma 1 we obtain

Lemma 2. Let \(p = q + m \) and \(r = 2q + m \) be where \(m > 0 \) is a fixed integer such that \(\frac{m^2}{2p} < 1 \). Then

\[
u(p, q) = \sum_{n=1}^{\infty} \binom{r_n}{qn} \frac{1}{2^n} = S_N(p, q) + c_4(p, m, N) \left(\frac{p}{N} \right)^{1/2} \left(1 - \frac{m^2}{2p} \right)^N,
\]

and

\[
S_N(p, q) = \sqrt{\frac{2}{\pi} \frac{1}{\sqrt{p}}} \sum_{n=1}^{N} \frac{1}{\sqrt{n}} \frac{1 - \left(\frac{m^2}{2p} \right)^n}{\sqrt{n}} + c_5(p, m, N) \frac{\ln N}{p}.
\]
Proof of Lemma 2.

We get an upper bound on \(\sum_{n=N+1}^{\infty} g(p,q,n) \) by using the identity \(\sum_{i=N}^{\infty} z^i = \frac{z^N}{1-z} \) with any \(z \) exceeding \(\left(1 - \frac{m^2}{2p} \right) \). It follows from identity (1) that \(u(p,q) - S_N(p,q) = \sum_{n=N+1}^{\infty} g(p,q,n) = c_5(p,m,N) \frac{1}{(pN)^{1/2}} \left(1 - \frac{m^2}{2p} \right)^{2p/m} \). Similarly, identity (1) gives an upper bound on the error term’s contribution to \(\sum_{n=1}^{N} g(p,q,n) \). The error is of magnitude \(\ln N/p \).

We shall need

Lemma 3. Under the conditions of Lemma 2,

\[
\sum_{n=1}^{N} \frac{1}{\sqrt{p}} \frac{(1 - \frac{m^2}{2p})^n}{\sqrt{n}} = \sqrt{2\pi} + c_z(p,m,N) \left(\frac{1}{\sqrt{p}} + \sqrt{\frac{p}{N}} \right).
\]

Therefore,

\[
S_N(p,q) = \sum_{n=1}^{N} \left(\frac{r_n}{q_n} \right) \frac{1}{2^{rn}} = \frac{2}{m} + c_5(p,m,N) \frac{\ln N}{p} + c_z(p,m,N) \left(\frac{1}{\sqrt{p}} + \sqrt{\frac{p}{N}} \right) \sqrt{\frac{2}{\pi}}.
\]

Remark. Lemma 3 shows that \(S_N(p,q) \) can get arbitrarily close to \(\frac{2}{m} \), for large \(p \) and \(N \). In fact, we select a sequence \(N = N(p) \) so that \(p/N(p) \to 0 \) and \(\ln N(p)/p \to 0 \), as \(p \to \infty \). By Lemma 2, it follows that \(\sum_{n=1}^{\infty} \left(\frac{r_n}{q_n} \right) \frac{1}{2^{rn}} \) converges to \(\frac{2}{m} \), as \(q \to \infty \) and \(\gcd(q,m) = 1 \).

Proof of Lemma 3.

We shall need an application of Euler’s summation formula ([5], p. 108 or [2]) to derive identity (4). Let \(f(k) = \frac{1}{\sqrt{p}} \left(1 - \frac{m^2}{2p} \right)^k \) be. Euler’s method yields formula (6) for the difference between \(\int_1^n f(x)dx \) and \(\sum_{1 \leq k < n} f(k) \) if \(f(x) \) is differentiable, i.e.,

\[
\sum_{1 \leq k < n} f(k) = \int_1^n f(y)dy - \frac{1}{2} \left(f(n) - f(1) \right) + \int_1^n B_1(\{y\}) f'(y)dy,
\]

where \(B_1(y) = y - 1/2 \) and \(\{y\} = y - [y] \).

We apply this formula to function \(f(k) \). Clearly, \(f(n) \) converges to 0 at a rate faster than \(\frac{1}{\sqrt{n}} \) as \(n \to \infty \), and \(f(1) < \frac{1}{\sqrt{p}} \). We set \(\frac{1}{s} = (1 - \frac{m^2}{2p}) \). Here \(s > 1 \), since \(p \) is large enough to make \(\frac{m^2}{2p} < 1 \). We note that \(f'(y) = \frac{1}{\sqrt{p}} \frac{(1 - \frac{m^2}{2p})^y}{\sqrt{y}} (- \ln s - \frac{1}{2y}) \). Observe that \(\ln s \sim \frac{m^2}{2p} \) as \(p \to \infty \).
First we asymptotically evaluate the first term on the right side in formula (6). A well-known integral equation for the gamma function \([5]\) says that for all \(\alpha > -1\)

\[
\int_0^\infty x e^{-x^\alpha} dv = \frac{1}{x^\alpha} \int_0^\infty e^{-t^\alpha} dt = \frac{1}{x^\alpha}, \ (\alpha + 1).
\]

(7)

By setting \(x = \ln s\) and \(\alpha = -1/2\), it follows that

\[
\int_0^\infty f(y) dy = \int_0^\infty \frac{1}{\sqrt{p}} e^{-y \ln s} \frac{dy}{\sqrt{y}} = \frac{1}{\sqrt{p}} (\ln s)^{-1/2} \sqrt{\pi}.
\]

(8)

Therefore, if \(p\) is sufficiently large then \(\ln s \sim \frac{m^2}{2p}\) and the above integral is asymptotically equal to \(\frac{\sqrt{\pi}}{m}\). Hence the term \(\int_1^n f(y) dy\) contributes \(\frac{\sqrt{\pi}}{m} + c_8(p, m, n) \frac{1}{\sqrt{p}} + c_9(p, m, n) \frac{1}{\sqrt{n}}\) to \(\sum_{1 \leq k < n} f(k)\) in formula (6).

For the last term of identity (6) we obtain

\[
\left| \int_1^n B_1(\{y\}) f'(y) dy \right| \leq \int_1^n |f'(y)| dy \leq \int_1^n \frac{1}{\sqrt{p}} \left(1 - \frac{m^2}{2p}\right)^y \frac{dy}{\sqrt{y}} \left(2 \frac{m^2}{2p} + \frac{1}{2y}\right)
\]

\[
\leq 2 \int_0^\infty \frac{1}{\sqrt{p}} \left(1 - \frac{m^2}{2p}\right)^y \frac{m^2}{2p} dy + \int_1^\infty \frac{1}{\sqrt{p}} \left(1 - \frac{m^2}{2p}\right)^y \frac{1}{2y} dy.
\]

(9)

Similarly to equation (8), identity (7) yields

\[
\int_0^\infty \frac{1}{\sqrt{p}} \left(1 - \frac{m^2}{2p}\right)^y \frac{m^2}{2p} dy = c_{10}(p, m) \frac{m^2}{p}.
\]

(10)

For the second term, we get

\[
\int_1^\infty \frac{1}{\sqrt{p}} \left(1 - \frac{m^2}{2p}\right)^y \frac{dy}{y^{3/2}} \leq \frac{2}{\sqrt{p}} \int_1^\infty \frac{dy}{y^{3/2}} = \frac{2}{\sqrt{p}}.
\]

These inequalities provide us with an upper bound on \(\int_1^n B_1(\{y\}) f'(y) dy\).

From here it follows that for fixed \(m\), \(\sum_{1 \leq k < n} f(k) = \frac{\sqrt{\pi}}{m} + c_7(p, m, n) \left(\frac{1}{\sqrt{p}} + \frac{1}{\sqrt{n}}\right)\). In fact, we get \(\lim_{q \to \infty} u(q + m, q) = \frac{2}{m}\) and for the probability that the ratio \(q/p\) will ever be reached, we conclude that \(\lim_{q \to \infty} 1 - \frac{1}{1 + u(q + m, q)} = 1 - \frac{1}{1 + 2/m} = \frac{2}{2 + m} \leq \frac{2}{3}\), where the limit is taken over the set of \((q, m)\)-pairs that are co-primes.

Acknowledgment

The problem discussed in this paper has been brought to the author’s attention by Professor J. Shavlik of the University of Wisconsin-Madison.
REFERENCES

