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Abstract-In a typical inventory planning problem with a life 
cycle of only one planning period, we incur the cost of 
production per unit produced, profit per unit sold, loss per unit 
not sold, and lost revenue per unit ordered but not matched 
due to the lack of availability. The goal is to find the inventory 
level that maximizes the expected net profit. Textbooks often 
use the newsboy problem to illustrate the inventory 
management paradigm. The derivation of the formulas for the 
optimal level is usually done on an ad hoc basis, by dull and 
rote mathematical manipulations, for each modification of the 
simple basic model. The only purpose of this note is to give a 
simple transparent proof of the fact that quite surprisingly the 
lost revenue can be combined with the profit by reducing the 
general problem to a well known simplified case with no lost 
revenue. The reduction uses an airline analogy and thus, with 
some tweaking, it places the proof into a classical revenue 
management paradigm. We also provide an alternative 
derivation of the optimal solution for the discrete case which 
integrates the problem into a much broader class of 
optimization problems. 

Keywords- Newsboy Problem; Inventory and Revenue 
Management; Optimization 

I. INTRODUCTION 

The newsboy (or newspaper boy or news-vendor, etc.) 
problem is a classical example in inventory management, 
and it can be traced back to Edgeworth’s work in 1888. 
Although in this note we have no interest in surveying the 
literature, we mention that an extensive historical overview 
is given in [1], [2] and [3]. A popular textbook with a 
reasonable introductory coverage of inventory theory can be 
found in [4]. 

The newsboy has to make a decision on how many 
newspapers to carry. If he stocks up too many copies then 
he will be left with unsold publications that have no value at 
the end of the day. If he carries too few copies then some 
customers will be unsatisfied. The problem’s main goal is to 
optimize the expected net profit by finding and setting the 
appropriate stock level. The use of expected value is 
generally justified by the law of large numbers, cf. [2]. 

A similar situation arises when managers make decisions 
about inventory levels of seasonal goods, such as Christmas 
cards that should satisfy the demand in December. Any 
cards left over in January have only a small residual value. 
This single-period model is also often used in the case of 
perishable goods and the fashion and apparel industries. 
Moreover, there is a downward trend in the life cycles of 
products in service industries and high-tech retail, and it 
leads to the growing importance of this model and its 
extensions as mentioned in [3]. 

Another more involved application is airline booking. 
Having empty seats corresponds to having too many 
newspapers. On the other hand, if there are passengers at the 
gate who can’t get on the plane then that corresponds to too 
few newspapers. It is customary to offer a bumping reward 
to the latter quite disappointed passengers to compensate for 
the inconvenience and as a gesture of goodwill. Sometimes 
the reward is in the form of a voucher to be used with the 
same airline which may generate future business and thus, 
reduce the actual loss. 

One obvious difference from the newsboy problem is 
that the stock level is set by the actual number s of available 
seats and therefore, the demand is censored by the number n 
of reservations taken. Of course, by setting n we can 
determine the optimal s, and if it is not equal to the given s 
then we can find the right n. Another potential difference is 
that since passengers pay different fares on the same flight, 
the profit per passenger may also vary. In the case of 
nonrefundable fares, no-shows forfeit the fare and thus, 
always contribute to the net profit (besides leaving room for 
more passengers). We will ignore these last two possibilities, 
though interested readers might consult [5], one of the 
authoritative monographs on revenue management, or [4, 
Section 18.8] on overbooking related issues that are 
typically more complex than the one we need here. We note 
that revenue management systems are getting increasingly 
popular in service industries, e.g., hotels, car rental 
companies, tour operators, etc. 

The only purpose of this note is to give a simple and 
transparent proof of the fact that when optimizing the 
expected net profit, we can combine two seemingly 
antipodal factors, the lost revenue and the profit. This is 
accomplished by changing the model with the lost revenue 
incorporated into the profit–but only on a theoretical level 
without changing other factors, e.g., the demand distribution 
which might be affected if we simply increased the profit. In 
this way the reduction is achieved by a reasonable change in 
the model rather than the customary mathematical 
derivation which does not seem to shed light on the reason 
why the simplified interpretation is possible. After the 
combination (cf. Theorem III.1), we can reduce the general 
problem to a well known simplified case with no lost 
revenue. We also provide an alternative proof for the 
discrete case that shows connections to more general 
optimization problems, cf. Problem in Section III. 
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II. THE ACTUAL PROBLEM 

Let X denote the random variable with distribution D 
and probability density function f(x) of the demand in 
certain units, e.g., dollars. 

We address the general case which involves different 
types of cost, profit, and losses. In Section III, we present a 
uniform approach in which some of these quantities can be 
effectively combined. Let c, g, l, and r stand for the cost of 
production per unit produced, price (gain) per unit sold 
(with g ≥ c), loss per unit not sold, and lost revenue (or 
bumping reward in the airline context) per unit ordered but 
not matched due to the lack of availability. Everything is 
measured in dollars. Let Ws(c,g,l,r,D) and EWs(c,g,l,r,D) 
denote the random variable corresponding to the total profit 
and its expected value, respectively, for the seller if s units 
are stocked. This quantity ultimately depends on the demand 
X which is independent of s and the number of sales Vs with 
s units stocked. 

In the case of overstocking the profit is gX-l(s-X)-cs= 
(g+l)X-(l+c)s, if X < s, and in the case of under stocking it 
is gs-r(X-s)-cs = (g+r-c)s-rX, if X > s. Note that both forms 
work if the stock level s is properly set at X. We also add 
that if c = 0 then l > 0 represents the loss due to unsold 
items. If c > 0 and l < 0 then -l may correspond to the per 
unit salvage value. On the other hand, if c > 0 and l > 0 then 
l may represent extra cost due to restocking and storage. In 
general, c+l ≥ 0 is the actual per unit cost combined with 
loss and salvage due to unsold units. 

For example, we want to find the maximum expected 
profit for the demand X ~ Binomial[n = 10, p = .50], with g 
= $3, l = $1, and c = r = $0. After graphing EWs(0, g, l, 0, 
Binomial[n = 10, p = 0.50]), s =1 ,2, …, 10, we obtain that 
the best choice for s is 6. Note, however, that we can find 
the answer without any graphing by finding the g/(g+l) = 
3/(3+1) = 0.75 quantile value of the distribution function of 
the demand as stated in Theorem III.2. 

III. THE REDUCTION 

Our goal is to present a method that reduces the general 
problem to its most well known base case of the newsboy 
problem with c = r = 0, see e.g., [6, Example 4b, pp145-
146]. Of course, the cost c can be easily introduced into this 
case. However, it is somewhat surprising that r can be 
absorbed by g. This fact is quite counterintuitive since we 
don’t expect the per unit loss r to be combined with the per 
unit gain g. As we will see, we can reduce the discussion to 
calculations with Ws(0, g+r, l, 0, D). Although, the formulas 
are well known in the general case, and usually derived by 
dull mathematical manipulations, we have not found an 
explanation or suggestion in the literature for such a simple 
reduction. 

Besides the cost of production, we have one source of 
gain and two sorts of losses. We might encounter loss due to 
leftover units and loss due to losing business (or 
compensating for inconvenience, e.g., offering bumping 
rewards in the airline business). In both cases, the loss 
depends on how the actual level of demand compares to the 

level of stocking. Amazingly, as we mentioned, the second 
kind of loss can be combined with the gain. To prove this 
we use the airline analogy. Since the argument involves an 
extra charge paid by the hopeful passengers, it might turn 
out to be quite appealing to the airlines but a rather 
dangerous mental exercise from the customer’s point of 
view–not to mention that once implemented passengers 
might be sensitive to higher ticket prices. 

In fact, the airline industry has always been the most 
creative in embracing new ideas for increasing revenue. As 
the Los Angeles Times reported in its Daily Travel & Deal 
Blog in September of 2009 (cf. http://travel.latimes.com/ 
daily-deal-blog/index.php/southwest-airlines-a-5256), 
Southwest Airlines added “an optional charge for ’EarlyBird 
Check-In,’ the right to board the plane immediately 
following Southwest’s Business Select and Rapid Rewards 
A-List customers. Fliers can pay an extra $10 for the peace 
of mind that they’ll get to board as soon as possible and 
grab an open seat just that much sooner. Also included in 
the service is automatic check-in within 36 hours of your 
flight’s departure”. Southwest also added extra fees for 
unaccompanied minors, dogs and cats, and doubled its fees 
for a third or overweight bag in 2009. Other companies use 
checked-bag charges (cf. 
http://www.airfarewatchdog.com/blog/3801089/airline-
baggage-fees-chart/).  

The proof suggests an extra fee for each potential 
passenger. We have no doubt that, by making an appealing 
mathematical explanation go terribly wrong, the airlines will 
be happy to explore this surcharge option as well. On the 
other hand, we are not sure that the obvious educational 
benefits gained from simplifying the optimization problem 
will compensate for any fee and think that the airline 
industry should not listen... 

Theorem III.1. We have that 

Ws(c, g, l, r, D) = Ws(0, g + r, l, 0, D) – cs – rX.  (1) 

Proof:  Clearly, 

Ws(c, g, l, r, D) = Ws(0, g, l, r, D) – cs, 

and thus, without loss of generality and after subtracting the 
cost of production cs, we suppose that c = 0. Now we 
borrow the terminology from the airline context, and assume 
that potential customers are required to pay an entrance fee 
upon arrival at the airport of their departure. This fee of $r is 
paid by all passengers who present themselves at check-in, 
irrespective of whether they will be accommodated or not. 
Note that the concept of the entrance fee is different from 
that of paying the fare in advance since no-shows do not pay 
this fee. 

In comparing the two sides of (1), we can ignore the 
“profit” due to the loss l per unit unsold since it is common 
in both  “models,” and hence the difference Ws(0, g+r, l, 0, 
D) – Ws(0, g, l, r, D)  is not affected. 

We consider the quantity Ws(0, g, l, r, D) + rX. In fact, 
we observe that the total profit comes from selling X units 
and generating g+r profit per unit sold if the demand can be 
completely satisfied, i.e., X ≤ s. However, if this is not the 
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case, then the bumping reward wipes out the entrance fee 
for every order beyond s, and the only gain that remains is 
(g+r)s from the first s orders. 

In the case of Ws(0, g+r, l, 0, D), a g+r profit is 
generated for every unit sold if X ≤ s as in the previous case. 
On the other hand, now there is no bumping reward; thus, a 
per unit profit of g+r is generated for each of the first s 
satisfied customers if X > s. We get that the total profit Ws(0, 
g + r, l, 0, D) is equal to that of the first model. 

For the sake of completeness, we derive a result about 
finding the best value of s which is a generalization (cf. [7, 
pp113-114] or [4, S18.7, pp875-877]) of a well-known fact 
in the case of c = r = 0 (cf. [6, Example 4b, pp145-146]). 

Theorem III.2. Let F-1(x) denote the quantile function, i.e., 
the inverse of the cumulative distribution function F(x) of X 
in the sense that F-1(x) is equal to the smallest y such that 
F(y) = x. Then we have that 

s = F-1








++
−+

lrg
crg                              (2) 

for the number s of units to be stocked to optimize the 
expected profit. 

Proof: We use Theorem III.1 and note that to maximize the 
expected profit EWs(c,g,l,r,D) with respect to s we can 
ignore the term  -rX  in (1) since it does not depend on s. 

First we deal with the case in which X is a discrete 
random variable. We derive that the expected value of 
Ws(c,g+r,l,0,D) is 

EWs(c,g+r,l,0,D) =(g + r)∑
≤

=
si

iXiP )(  

+(g + r)s∑
>

=
si

iXP )( –  l∑
≤

=−
si

iXPis )()( – cs, 

and after adjusting the third term on the right hand side by   
-l∑>

=−
si

iXPss )()(  = 0, we get that 

EWs(c,g+r,l,0,D) = (g+r) EVs – l(s–EVs) – cs  (3) 

 = (g+r+l) EVs – (l+c)s, 

with Vs denoting the number of sales. 

We note that (3) can be easily derived without any 
calculation: aside of the production cost, the gain is due to 
the number of sales and the loss comes from overstocking. 
The latter quantity is l times the size s reduced by the 
expected size of the sales since sales do not generate any 
loss. 

We also get that the difference in expected total profit by 
preparing for one more customer is  Δs+1 = EWs+1(0, g+r, l, 
0, D) – EWs(0, g+r, l, 0, D) = (g+r+l)E(Vs+1 – Vs) – (l+c) = 
(g+r+l)∑ +≥

=
1

)(
si

iXP –(l+c) since Vs+1–Vs is the indicator 

variable of the event that X=i≥s+1 if X is a discrete random 
variable. Thus the expected profit reaches its largest value if 
s is largest so that 

Δs+1  = (g + r + l) ∑
+≥

=
1

)(
si

iXP  – (l + c) > 0 

since clearly, Δs  is a decreasing function in s. The solution 
is one more than the largest s for which 

∑
≤

=
si

iXP )(  < lrg
crg

++
−+

, 

or equivalently, the smallest s so that 

P(X ≤ s)  ≥ lrg
crg

++
−+

. 

If X is a continuous random variable then first we observe 
that 

s∂
∂ EVs = s∂

∂ ( ∫∫
∞

+
s

s

dxxfsdxxxf )()(
0

) = P(X ≥ s). 

Similar to our use of (3) in deriving Δs+1, this yields that 

s∂
∂ EWs (c, g+r, l, 0, D) = (g + r + l)P(X ≥ s) − (l + c) 

which is positive as long as 

P(X ≤ s)  ≥ lrg
crg

++
−+

 

as in the discrete case. 

For a given demand distribution, the value of s can be 
easily found by, say, using some software package, e.g., S-
PLUS or R. From a statistical point of view, if F is 
continuous and unknown then we can take the order 
statistics of a sample of size n from the demand distribution 
and construct confidence intervals of the form [Xi:n, Xj:n] for 
any required quantile. Here i and j depend on the given 
confidence level but not on the actual distribution; thus, it 
provides a distribution-free estimation method for s. If F is 
discrete then this interval will work at the given or higher 
confidence level, cf. [8]. 

The solution given in (2) tells us that we should set the 
stock level to satisfy (g + r - c)/ (g + r + l) fraction of the 
demand. To interpret this we can benefit from switching 
from maximizing expected profit to minimizing expected 
cost. As a rule of thumb, we can view the numerator g - c + 
r as the unit cost of under ordering (or “underage”), i.e., 
decrease in net profit due to failing to order a unit that could 
have been sold, including loss of customer goodwill, and the 
denominator as the sum of this cost and the unit cost c+l of 
over ordering (or “overage”), i.e., decrease in net profit due 
to ordering a unit that could not be sold, cf. [4]. This can be 
justified by noting that the discrete case can be easily treated 
as a special case of the following 

Problem (Problem 2 in [9]) Let x1 < x2 < … < xn be n real 
numbers. Given the positive weights w1, w2,…,wn find an a 
such that the minimum of 
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D(a) = D(a; w1, w2,…,wn) = axw i

n

i
i −∑

=1

 

is achieved. 

We rephrase the solution from [9]. The function D(a) is 
non-negative, continuous and piecewise linear, so its 
minimum is attained at one of the points where the linear 
segments are joined, i.e., at some xm. This problem can 
easily be reduced to finding the minimum m such that 

,
mw  = 5.0

11

/ ≥∑∑
==

n

i
i

m

i
i ww                       (4) 

(The optimum value a = xm is sometimes referred to as the 
weighted median of the values xi with weights wi.) To see 
this we need only to check the changes in D(a) as a moves 
from the left of x1 to the right of xn. A change from a to a+h, 
h > 0, within the interval [xm, xm+1) yields the change 

D(a+h)−D(a) = h ( ∑∑ +==
−

n

mi i
m

i i ww
11

); thus, we should 

increase a until D(a+h)−D(a) ceases to be negative, and 
thus, (4) follows. 

To apply this to our situation in which we have a 
discrete demand distribution with a finite support set of size 
n, we set  xi = i − 1, 1 ≤ i ≤ n, wi = (c + l)P(X = xi) for 1 ≤ i 
≤ m = s+1 and wi = (g-c+r)P(X = xi) for s+1 < i ≤ n.  The 
criterion (4) turns into ,

mw =(c+l)F(s)/((c+l)F(s)+(g-c+r)(1-
F(s))) ≥ 0.5, i.e., F(s) ≥ (g-c+r)/(g+r+l). Clearly, the 
problem and its solution can be generalized to an infinite 

support set x1 < x2 < … as long as ∑∞

=1i iw  is finite. 

IV. DISCUSSION AND CONCLUSIONS 

Textbooks often use the newsboy problem to illustrate 
the inventory management paradigm. They derive the 
optimum under different settings by the application of the 
same approach: calculate the benefit of slightly changing the 
inventory level. This standard approach becomes a 
repetitive task requiring only pedagogically 
counterproductive rote calculations. In this note we found 
that determining the optimum tradeoff between over and 
under stocking in the various inventory settings should not 
be a cumbersome mathematical task. In fact, introducing the 
cost of lost revenue into the usual basic model does not lead 
to any complications if one uses the right reduction. We 
have not found an explanation or suggestion in the literature 
for such a simple reduction. In addition, the underlying 
optimization problem can be rephrased in terms of more 
general problems which make the process and result of 
solution more transparent. 

It would be interesting to explore other more complex 
models whether similar reduction could be applied for 
finding optimum solutions. 
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