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1. INTRODUCTION

In the two-person nim-type game called Euclid a position consists of a pair (a, b)

of positive integers. Players alternate moves, a move consisting of decreasing the

larger number in the current position by any positive multiple of the smaller number,

as long as the result remains positive. The first player unable to make a move

loses. In the restricted version a set of natural numbers Λ is given, and a move

decreases the larger number in the current position by some multiple λ ∈ Λ of

the smaller number, as long as the result remains positive. We present winning

strategies and tight bounds on the length of the game assuming optimal play. For

Λ = Λk = {1, 2, . . . , k}, k ≥ 2, the winner is determined by the parity of the position

of the first partial quotient that is different from 1 in a reduced form of the continued

fraction expansion of b/a.

Apparently, the game was introduced by Cole and Davie [1]. An analysis of

the game and more references can be found in [1,7] (see also [3]). The goal is to

determine those a and b for which the player who goes first from position (a, b)

can guarantee a win with optimal play. There is no tie and the game is finite so

one of the players must have a winning strategy for each starting position (a, b).

The winning positions are intimately related to the ratio of the larger number to

the smaller one when compared to the golden ratio, Φ = 1+
√

5
2

≈ 1.6180, as it is

demonstrated by

Theorem A: Player 1 has a winning strategy if and only if the ratio of the larger

number to the smaller in the starting position is greater than Φ.

The winning strategy can be described in terms of the set W of all unordered

pairs (a, b), a, b > 0, with the property that b/a > Φ or a/b > Φ, and its complement
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set L. It is showed [1,8] that for any pair in W , there is at least one move that leaves

a pair in L, and for any pair in L, all legal moves leave a pair in W . We describe

the solution in geometric terms in Section 2.

Without loss of generality, we can assume that a < b for the starting position

(a, b). (Afterwards, whenever it is helpful, we automatically rearrange the terms

so that the first number is the smaller one as long as the numbers are different.)

Accordingly, Player 1 has a winning strategy if and only if b/a > Φ. We study

a simple variation of the game in Section 3. It leads to the use of the Euclidean

algorithm to obtain the continued fraction expansion relevant to the game. In

Section 4 this approach is applied to the original game, and results on its length

L(a, b) are also given. Generalized versions of the game are introduced and analyzed

in Section 5.

2. THE GEOMETRIC APPROACH

We consider the open cone defined by L = {(x, y) | x, y > 0, 1/Φ < y/x < Φ}.
The goal of the game is to move to the diagonal y = x and thereby prevent the

other player from making further moves. We have two cases depending on whether

(a, b) is in L or not. The following two properties describe the differences and are

illustrated in Figures 1–3.
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Figure 1 Figure 2 Figure 3

(i) For every pair (a, b), a 6= b, there is exactly one direction (horizontal or

vertical) in which one can make a legal move. From a position (a, b) ∈ L
there is only one legal move, and it leads to a position outside L.

(ii) For every a there are exactly a points in L with x = a. Therefore, if

a < b, then there is a unique integer multiple of a, say d = λa, such that

decreasing b by d places the new pair (a, b− d) in L provided (a, b) 6∈ L.
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The first graph shows that (a, b) with a < b forces a downward move while we

must move to the left if a > b. Note that the case (a, b) with a > b can be reduced to

the one with a < b by a reflection with respect to the line y = x. If (a, b) ∈ L, a < b,

then a < b < 2a and thus (a, b − a) is the only legal move from (a, b) (Figure 2).

It is easy to see that a
b−a

> Φ, yielding property (i). Property (ii) is illustrated in

Figure 3. For every integer a there are exactly a points with integer coordinates on

the line x = a within the cone L. This follows by the observation that the line x = a

meets L in a segment of length Φa− 1
Φ
a = a. If (a, b) 6∈ L then, by the irrationality

of Φ, there is exactly one move leading to a point (a, b′) ∈ L for some integer b′, as

opposed to the case (a, b) ∈ L when the only legal move will take the player outside

L (Figure 2).

In case of the optimal play the loser has only one legal move available to him at

each step, i.e., his moves are forced upon him and he cannot even extend the length

of the game. Figure 4 illustrates two typical games: the starting positions (9, 2)

and (11, 8) give the winning strategy to Players 1 and 2, respectively. In Section 5

we introduce variations of the game in which restrictions on the moves guarantee

that even the loser has choices to make.
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3. A VARIATION AND THE EUCLIDEAN ALGORITHM

In this section, we turn to a deterministic version of the game. Players alternate

moves, and a move decreases the larger number in the current position by the

smaller number, as long as the result remains positive. The first player unable to

make a move loses. The reason for introducing this variation is to understand how

simple continued fractions help in analyzing these and the original games. In fact,

the notion of continued fractions is based on the process of continued alternating

subtractions [2]. We can express rational numbers as continued fractions by using the



4

Euclidean algorithm. First we take the finite simple continued fraction expansion of

b/a = [a0, a1, a2, . . . an]. The natural number ai is called the ith partial quotient (or

continued fraction digit) of b/a. (Note that we start indexing at i = 0.) This form

provides us with a representation of the steps of this game. Note that if b = qa + r

with integers q and r (0 ≤ r < a), then q = a0. After a0 consecutive subtractions

of a from b the remainder becomes smaller than a. We switch their roles and keep

continuing the subtractions until r = 0, at which point a = b. The number of legal

moves in this game is a0 +a1 + · · ·+an−1; thus Player 1 wins if and only if
∑n

i=0 ai

is even.

Note that if an 6= 1 then the n + 1-digit [a0, a1, a2, . . . an] and the n + 2-digit

[a0, a1, a2, . . . an−1, an− 1, 1] forms stand for the same rational number and the digit

sum is not affected. The former expansion is called the short form. In this paper

we always use short forms.

Asymptotic results for the average of the length L′(a, b) =
∑n

i=0 ai − 1 of the

game are given in [2].

4. THE CONTINUED FRACTION BASED APPROACH

We can also completely describe the winning strategy for the original game

in terms of the partial quotients ai of b/a, a < b. If b/a = [a0, a1, . . . , an+1] =

[1, 1, . . . , 1], i.e., ai = 1 for each i = 0, 1, . . . , n + 1, then we switch to the short form

[a0, a1, . . . an−1, 2] with ai = 1, i = 0, 1, . . . , n − 1. (Note that this happens only if

we divide two consecutive Fibonacci numbers.) In this way, we can guarantee that

at least one of the partial quotients is different from 1.

Clearly, as long as ai = 1, i = 0, 1, . . . , k−1, players are forced to take the smaller

number from the larger. If the next quotient ak 6= 1, then we say that ak is the first

digit different from 1. For any position (a, b), a < b, with b/a = [a0, a1, . . . , an], the

actual move of taking λa from b can be specified by the positive integer multiplier

λ. The resulting position can be described by the fraction [a1, . . . , an] if λ = a0 or

[a0 − λ, a1, . . . , an] if λ < a0. Clearly, every move affects the actual first continued

fraction digit only. The following theorem was suggested by Richard E. Schwartz

[6].

Theorem 1: Let [a0, a1, . . . , an] with an ≥ 2 be the continued fraction expansion

of b/a for the starting position (a, b), a < b. Player 1 has a winning strategy if and

only if the first partial quotient ai that is different from 1 appears at a position with
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an even index. In other words, the first player who can actually make a non-forced

move has a winning strategy.

This theorem is the explicit form of the statement made by Spitznagel [7] who

noted that “the opponent of someone following the (winning) strategy is likely to

notice his moves are being forced every step of the way, and from this observation

it might be possible for him to determine what the strategy must be.”

Note that the short continued fraction notation guarantees that there is a digit

different from 1, namely an ≥ 2. We use the notation ek+1 = [ak+1, ak+2 . . . , an].

Proof. If ak ≥ 2 then the player facing the ratio b′/a′ = [ak, . . . , an] can win.

This means that once a player meets the first partial quotient different from 1 then

she can win, and the other player will face a 1 in every consecutive step (otherwise

a reversal of strategy would be possible). Assume that we have already removed the

leading 1s from the expansion and k < n. We will see that the optimal play closely

follows the continued fraction expansion by processing and removing consecutive

digits. It takes one or two moves (one for each player) to eliminate the actual digit.

We have two cases.

(*) If ek+1 < Φ then this player can take aka
′ from b′ leaving y = ek+1 behind,

with 1/Φ < 1 < ek+1 < Φ. Note that ak+1 = 1 follows. In this case there

is a single move used to remove ak from the expansion to get position

(a′′, b′′) with ratio y = [ak+1, ak+2, . . . , an] = [1, ak+2, . . . , an].

(**) Otherwise ek+1 > Φ and player takes only (ak − 1)a′ from b′ leaving y =

[1, ak+1, ak+2, . . . , an] behind. Once again y < Φ, for

1/Φ < 1 < y = 1 + 1/ek+1 < 1 + 1/Φ = Φ.

The pair (a′′, b′′) left for the other player has ratio y = b′′/a′′ < Φ. There-

fore, y has a continued fraction expansion starting with 1 and thus the

other player is forced to take a′′ from b′′. In this case it takes two moves

to remove ak from the continued fraction expression.

In any case, after the other player’s move is finished, we get b′′−a′′

a′′
= b′′

a′′
− 1 <

Φ− 1 = 1
Φ
. We set b′′′ = a′′ and a′′′ = b′′ − a′′, flip the numerator and denominator,

and derive that the resulting ratio b′′′/a′′′ > Φ. With d = bb′′′/a′′′c ≥ 1 we can

rewrite b′′′/a′′′ = d + 1
z

> Φ. In fact, d = ak+2 and z = [ak+3, ak+4, . . . , an] if we
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followed (*), while d = ak+1 and z = [ak+2, ak+3, . . . , an] if we used (**). The case

d ≥ 2 can be reduced to that of ak ≥ 2. If d = 1 then 1/z > Φ − 1 = 1/Φ, i.e.,

z < Φ, and we proceed with the argument used in (*), with z playing the role of

ek+1.

We can continue this until k becomes n when the player can take the (an − 1)-

times multiple of the smaller number from the larger one, leaving equal numbers for

the other player, who will be unable to make a move.

We repeatedly applied the simple fact that 1 + 1
z

> Φ if and only if z < Φ. The

player with winning strategy cannot make a mistake if she wants to win. In summary,

she can (and must) always leave y = [1, u0, u1, . . . , um] with u = [u0, u1, . . . , um] > Φ

behind for the other player. This makes y < Φ and forces the other player to simply

take the actual smaller number from the larger one. In turn she will face a position

with a “safe fraction” u > Φ, i.e., a position outside L.

Remark. Theorems A and 1 both give a necessary and sufficient condition for

Player 1 to have a winning strategy. This way we obtain a characterization of the

condition that x = [a0, a1, . . . , an] is greater than Φ in terms of the parity of the

location of the first continued fraction digit ai different from 1. This is in agreement

with the fact that Φ = [1, 1, 1, . . .], and the convergents alternately are above and

below the exact value.

Assuming optimal play by the winner, tight bounds for the length L(a, b) of the

game are given in

Theorem 2: Let [a0, a1, . . . , an] with an ≥ 2 be the continued fraction expansion

of b/a for the starting position (a, b), a < b. For the number L(a, b) of steps of the

game we get that

n + 1 ≤ L(a, b) = n + 1 +
∑
ak≥2

[ak+1,...,an]>Φ

1 ≤ 2n + 1.

The lower bound is attained if and only if the partial quotients are equal to 1 at

all even or all odd positions. The upper bound is reached if and only if all partial

quotients are at least 2.

Note that we use the short notation. For example, the position (5, 13) has ratio

13/5 = [2, 1, 1, 2]; hence the lower bound is not attained according to the theorem. In

fact, L(5, 13) = 5. The long form 13/5 = [2, 1, 1, 1, 1] does not satisfy the condition

an ≥ 2 of the theorem.
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Proof. The proof is based on that of Theorem 1. The lower bound assumes

that there are only simple moves, i.e., either a 1 is removed or (*) is used. In the

latter case, if for some k and m > k : ak 6= 1, ak+1 = · · · = am−1 = 1, and am 6= 1,

then m − k must be even to guarantee that ek+1 < Φ by the Remark made after

Theorem 1.

The identity for L(a, b) follows from the observation that an extra move is made

when a player applies (**), i.e., when the conditions ak ≥ 2 and ek+1 > Φ are

satisfied.

To reach the upper bound ak ≥ 2, k = 0, 1, . . . , n, suffices. In this case the

game and the Euclidean algorithm are closely related in the following sense. At any

position (a, b), if b = qa + r, q ≥ 2, 0 ≤ r < a, then Player 1 takes q− 1 (rather than

q) times a away from b. If r = 0 then the game is over. Otherwise, the other player

is left with no other choice but to take a from b−(q−1)·a, for a < b−(q−1)·a < 2a.

If the original ratio is b/a = [a0, a1, . . . , an] then, at each step, Player 1 will take

a0 − 1, a1 − 1, . . . times the actual smaller number from the actual bigger one while

Player 2 always subtracts the smaller one from the bigger one (and stops when the

numbers are equal). Note that Player 1 has a winning strategy when the upper

bound is attained.

Examples. The games illustrated in Figure 4 have length L(9, 2) = 3 for

9/2 = [4, 2] (better yet 9/2 = [4+, 2]), and L(11, 8) = 4 for 11/8 = [1, 2, 1, 2]. (The

symbol + in the subscript indicates that an extra step is needed due to passing

through (**).)

Example: reverse games. We can reverse the continued fraction digits of

b/a to get the “reverse” game. If b/a = [a0, a1, . . . , an] and gcd(a, b) = 1 then we

take c = [an, an−1, . . . a0] in its short form. It is easy to see that the numerator of c

(in lowest terms) is b, i.e., c = b/a′ with some a′ such that gcd(a′, b) = 1. If a0 > 1

then for the “reverse” game starting at position (a′, b) we obtain L(a′, b) = L(a, b).

For example, 18/7 = [2+, 1, 1, 3] gives L(7, 18) = 5 and a reverse 18/5 = [3+, 1, 1, 2]

which takes L(5, 18) = 5 steps. If Player 2 has the winning strategy then L(a′, b) =

L(a, b) − 1; otherwise L(a′, b) = L(a, b) by the Remark made after Theorem 1. In

fact, 43/25 = [1, 1, 2+, 1, 1, 3] has L(25, 43) = 7 and 43/12 = [3+, 1, 1, 2+, 2] gives

L(12, 43) = 7.

The game favors Player 1. In fact, Player 1 has more than 60% chance of

winning [7]. Assuming that the average behavior of integers 0 < a < b ≤ N
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approximates that of the random reals in [0, N ] and using the geometric approach,

Theorem A suggests 1/Φ ≈ .618 for the winning probability in the following sense:

limN→∞ P ((a, b) ∈ W | a < b ≤ N) = 1/Φ.

The length n + 1 of the shortest game is the running time of the Euclidean

algorithm, and its average is asymptotically 12 ln 2
π2 ln N ≈ 0.843 ln N for randomly

selected starting positions (a, b), a < b ≤ N , as N → ∞ (cf. [2]). (The worst

case scenario for the length of the shortest game occurs for Fibonacci-type games,

i.e., when the starting position is (a, b) = (qn+1, pn+1) for some n ≥ 1 such that

pn+2 = pn+1 + pn and qn+1 = pn with p0 = 1 and integer p1 = c ≥ 2. The resulting

ratio is b/a = [a0, a1, . . . an] = [1, 1, . . . , 1, c], and the length is asymptotically ln N
ln Φ

≈
2.078 ln N in this case.)

For the length L(a, b) computer simulation suggests that it takes about 9-10

steps on the average to finish games with starting positions (a, b), a < b ≤ 10000.

5. THE RESTRICTED GAME: REDUCTION AND GENERALIZATIONS

In this section, emphasizing the competitive nature of the original game, we

discuss its restricted versions which, at the same time, generalize the version dis-

cussed in Section 3. Given a set of natural numbers Λ, players alternate moves,

and a move decreases the larger number in the current position by some multiple

λ ∈ Λ of the smaller number, as long as the result remains positive. The first player

unable to make a move loses. For the original game we have Λ = {1, 2, 3, . . .}. We

are interested in various subsets of this set. Theorems 4, 5, and 6 give the complete

analysis for three different subsets. The simplified deterministic game of Section 3

works with Λ = {1}. By the connection between the game and the corresponding

continued fraction expansion we can easily see

Proposition 3: Theorems 1 and 2 can be extended to hold under the conditions

Λ = Λk = {1, 2, . . . , k}, b/a = [a0, a1, . . . , an] with a < b, ai ∈ {1, 2, . . . , k} for all

i = 0, 1, . . . , n, and an ≥ 2.

The next interesting case is Λ = Λ2 with no restrictions on the ai’s. We sketch

the analysis of this game and characterize winning strategies in Theorem 4. The

general case of Λk is covered by Theorem 5. There is an evident parallelism with

the original game though the restricted version seems more fair and interesting, for

it is no longer true that the first player who can actually make a non-forced move

has a winning strategy.
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We introduce a reduction of the partial quotients of [a0, a1, . . . , an] resulting in

a reduced sequence of digits [r0, r1, . . . , rm] made of 1s and 2s only. This form helps

us in finding the player with a winning strategy. In fact, the characterization of a

winning strategy in terms of the digits of the reduced sequence reminds us of that

of the original game. Once a player meets the first digit ri different from 1 then she

can win by never letting the other player face a 2 in the reduced sequence.

Every partial quotient ai ≥ 4 can be replaced by a 1 if ai ≡ 1 mod 3 and by

a 2 if ai ≡ 2 mod 3. Any multiple of 3 simply can be dropped from the continued

fraction expansion as it gives benefit to neither player: it can be used for keeping

one’s turn but cannot be used to switch turns. (Although this fact can be seen

directly, a formal justification of this rule will come out in Cases (e) and (f) in the

proof of Theorem 4.) We append a 2 to the end of all reduced sequences not ending

in a 2. For example, after replacements, we get 11/9 = [1, 4, 2] ⇒ [1, 1, 2] and

36/29 = [1, 4, 7] ⇒ [1, 1, 1, 2], and Player 1 and Player 2 can win in the respective

games. In both cases the first 2 characterizes the goals of Player 1: in the former

one Player 1 will force Player 2 to finish the removal of the partial quotient 4. In the

latter one, Player 1 tries to accomplish the removal of 4 but Player 2 can prevent

it from happening by moving to 3, and then to 0, thus forcing Player 1 to face the

last quotient 7, then 4 and 1. Remarkably, the conditions of Theorem 1 still work.

Theorem 4: For the game Λ = Λ2, Player 1 has a winning strategy if and only if

in the reduced form the first digit ri that is different from 1 appears at a position

with an even index.

Proof. The proof is done by induction on the length of the reduced sequence

[r0, r1, . . . , rm]. We give only the main ideas. Let x = [a0, a1, . . . , an] be a ratio with

reduced form [r0, r1, . . . , rm], ri ∈ {1, 2}, i = 0, 1, . . . ,m. Player 1 refers to the player

facing x. The statement holds for m = 0, i.e., reduced sequences of length 1. In this

case, the ai’s are multiples of 3 potentially followed by a last digit an ≡ 2 mod 3.

Winning by Player 1 is assured (cf. Cases (e) and (c) below). Suppose that the

statement is true for any reduced sequence [r1, r2, . . . , rm] of length m.

We prove that any reduced sequence [r0, r1, r2, . . . , rm] of length m + 1 means

a win for Player 1 if the first digit is r0 = 2 or if the player facing the sequence

[r1, . . . , rm] loses. Nothing changes if the first digit a0 is dropped. We have six

cases. The first two deal with r0 = 1, while the next two are concerned with r0 = 2.
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The last two refer to cases when a0 is removed, i.e., when a0 is a multiple of 3. Each

step involves a goal to be met by the player with a winning strategy.

Case (a): The player faced with [r1, r2, . . . , rm] wins and a0 ≡ 1 mod 3. Any

move with multiplier λ by Player 1 can be complemented by Player 2 using a move

with multiplier 3− λ to yield a′0 ≡ 1 mod 3, and finally forcing Player 1 to remove

the first digit of x, leaving Player 2 in a winning position [r1, r2, . . . , rm].

Case (b): The player faced with [r1, r2, . . . , rm] loses and a0 ≡ 1 mod 3. Player 1

can always move to some a′0 congruent to 0 mod 3 and finally remove the first digit

of x. This makes Player 2 start with [r1, r2, . . . , rm] and hence Player 1 a winner.

Case (c): The player faced with [r1, r2, . . . , rm] wins and a0 ≡ 2 mod 3. Player 1

can always move to some a′0 congruent to 1 mod 3 and finally force Player 2 to

remove the first digit of x. Now Player 1 is facing [r1, r2, . . . , rm] and wins.

Case (d): The player faced with [r1, r2, . . . , rm] loses and a0 ≡ 2 mod 3. Player 1

can always move to some a′0 congruent to 0 mod 3 and finally remove the first digit

of x. This makes Player 2 start with [r1, r2, . . . , rm] and hence Player 1 a winner.

Case (e): The player faced with [r1, r2, . . . , rm] wins and a0 ≡ 0 mod 3. Player 1

can always move to some a′0 congruent to 1 mod 3 and finally force Player 2 to

remove the first digit of x. Now Player 1 is facing [r1, r2, . . . , rm] and wins.

Case (f): The player faced with [r1, r2, . . . , rm] loses and a0 ≡ 0 mod 3. Any

move with multiplier λ by Player 1 can be complemented by Player 2 using a move

with multiplier 3− λ to yield a′0 ≡ 0 mod 3. Finally Player 2 removes the first digit

of x. Now Player 1 is facing [r1, r2, . . . , rm] and loses. This completes the inductive

step.

Note that if the first digit is reduced to 1 then it acts like a negation, i.e.,

changing the winner-loser relationship based on [r1, r2, . . . , rm] in agreement with the

theorem. The optimal play can be established by processing the reduced sequence

backwards, i.e., from right to left and setting goals for the moves in accordance with

the proof. At the end, the winning strategy emerges as a sequence of instructions

on how to remove the digits of the original continued fraction one by one, from left

to right. The following examples illustrate the process.

Example. The starting position (6, 19), i.e., 19/6 = [3, 6] reduces to [2] which

is a win for Player 1. As [6] reduces to [2], which is a win for Player 1, we proceed

with Case (e). The goal for Player 1 is to always move to some value v ≡ 1 mod 3 at

this digit. As [3, 6] reduces to [2] again, the same goal is set for Player 1. In terms
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of the actual steps, Player 1 first finds that the first target is v = 1 as v ≡ 1 mod 3.

This instructs Player 1 to take twice the smaller number from the larger one, i.e.,

2 · 6 from 19. It leaves the position (6, 7) with 7/6 = [1, 6] for Player 2 forcing the

removal of the quotient 1. Player 1 is presented with 6/1 = [6], i.e., the position

(1, 6). Player 1 has to move to 4 ≡ 1 mod 3 by Case (e) again. In fact, the game is

completed by taking 2 · 1 from 6 to yield (1, 4). Now Player 2 moves to (1, u), u = 2

or 3, and Player 1 wraps up the win by moving to 1 mod 3, i.e., (1, 1).

Example. The ratio 2393/459 = [5, 4, 1, 2, 6, 5] results in [2, 1, 1, 2, 2], i.e., a

win for Player 1. The backward processing provides the following goals: at quotient

5 move to 1 mod 3 by Case (c), at 6 move to 1 mod 3 by Case (e), at 2 move to

1 mod 3 by Case (c), at 4 move to 0 mod 3 by Case (b), and at 5 move to 1 mod 3

by Case (c). Note that 1934/459 = [4, 4, 1, 2, 6, 5] is a win for Player 2 according to

the reduced sequence [1, 1, 1, 2, 2]. The goals for Player 2 are similar to those of the

previous example for Player 1 except that at processing the first quotient 4, Player 2

must move to 1 mod 3 by Case (a).

For the length L2(a, b) of the game we get L2(a, b) = 2
∑

ai 6=1d
ai

3
e+n1−na,b,d−1

where n1 and na,b,d are the number of ai’s that are equal to 1 and the number of

times we used Cases (a), (b), and (d).

The general case Λ = Λk, k ≥ 2, is fairly similar to that of Λ2. Reduction can

be applied in the following sense: any multiple of k + 1 can be dropped from the

continued fraction expansion and every partial quotient ai > 2 can be replaced by

a 1 if ai ≡ 1 mod (k + 1) and by a 2 if ai ≡ 2, 3, . . . , k mod (k + 1). Theorem 4

translates into

Theorem 5: Player 1 has a winning strategy for the game Λ = Λk, k ≥ 2, if and

only if in the reduced form the first digit ri that is different from 1 appears at a

position with an even index. For the length Lk(a, b) of the game we get Lk(a, b) =

2
∑

ai 6=1d
ai

k+1
e + n1 − na,b,d − 1 where n1 and na,b,d are the number of ai’s that are

equal to 1 and the number of times we used Cases (a), (b), and (d).

We omit the proof, which closely follows that of Theorem 4 with Cases (c) and

(d) referring to a0 ≡ 2, 3, . . . , k mod (k + 1). Note that if k = 1 then we never

encounter Cases (c) and (d). Cases (a) and (b) correspond to an odd quotient ai

and thus, L1(a, b) is in agreement with L′(a, b) =
∑n

i=0 ai − 1.

The winner can be determined by using the reduced sequence in its short form.
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One might think (but the author has not been able to prove) that the winning

probability of Player 1 for game Λk changes from 1/2 to 1/Φ as k →∞.

The reader might consider other generalizations of the original game. Clearly,

Λ must contain 1 if we want the game to be playable until a ratio of 1 is reached.

The referee suggested selecting Λ to be the set of all odd natural numbers. It turns

out that this version can be analyzed similarly to the deterministic game discussed

in Section 3 by means of a slightly more general

Theorem 6: For any subset Λ of the odd natural numbers containing 1, Player 1

wins if and only if the parity of the sum of the partial quotients of b/a is even.

The proof is straightforward for every move changes the parity of the sum. The

game is deterministic in the sense that the outcome of the game is not influenced

by skill. Only the length of the game can be affected by the particular moves.

We note that the general game with starting position (a, b), a < b, and b/a =

[a0, a1, . . . , an] can be also analyzed by playing Bachet’s subtraction game on a

sequence of n + 1 connected intervals. Two consecutive intervals share one of their

endpoints. The length of the ith interval is equal to the partial quotient ai−1, 1 ≤
i ≤ n, and an − 1 if i = n + 1. Starting with the first interval, each move takes

the player to go to another point of the interval. The Sprague–Grundy numbers

can be easily determined. (Visually, one can play the game on the Stern–Brocot

tree of rationals, starting at point 1 and ending at point (a, b), a < b, with the game

represented by intervals of length a0, a1, . . . , an−1, an − 1.)
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