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ABSTRACT. In this paper the authors study one- and
two-dimensional color switching problems by applying
methods ranging from linear algebra to parity arguments,
invariants, and generating functions. The variety of tech-
niques offers different advantages for addressing the exis-
tence and uniqueness of minimal solutions, their character-
izations, and lower bounds on their lengths. Useful exam-
ples for reducing problems to easier ones and for choosing
tools based on simplicity or generality are presented. A
novel application of generating functions provides a unify-
ing treatment of all aspects of the problems considered.

1 Introduction

The motivation for this paper is to illustrate several approaches to solving
color switching games. At its most general, a color switching game is a
one-person game played on a set of locations (e.g., squares on a chessboard
or the vertices of a graph) each colored black or white, which we call the
“coloring pattern.” The player makes a move by changing the color of the
location of her choice. However, each location is associated with a set of
neighbors in a predetermined way. By changing the color of one location,
the colors in the associated locations also are changed automatically. Given
initial and final coloring patterns, the game is won if the player successfully
“moves” from the one pattern to the other. We begin by focusing on the
following two problems found in [9] (Exercises 3.4.25 and 3.4.26, p.117) in
a slightly different form.

Problem 1. Consider a row of 2n squares colored alternately black and
white. A legal move consists of choosing any set of contiguous squares (one
or more squares with no gaps allowed), and inverting their colors. What
is the minimum number of moves required to make the entire row of one
color?

Problem 2. Answer the same question as above, except now we start
with a 2m x 2n checkerboard and a legal move consists of choosing any
subrectangle and inverting its colors.

Clearly, in Problem 1, n moves will work, for we can invert the 1st square,
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then the 3rd square, etc. In Problem 2 we can switch all even numbered
rows and then all odd numbered columns and thus solve the problem in
m + n moves. Not only will we show that these are best possible but we
will completely characterize all optimal solutions to Problem 2.

We also generalize these problems to linear and rectangular boards with
arbitrary initial colorings and moves of both fixed and arbitrary sizes. In
each case, the game is won by attaining one color, say white, throughout
the entire board. We are interested in the following questions: Can we win
the game? If so, what is the minimum size of a winning set of moves? Is a
minimal winning set (a winning set of minimum length) unique? Whether
or not a minimal winning set is unique, is there a simple description of a
minimal winning set, or if not, is there a simple algorithm that will generate
a minimal winning set?

The discussion revolves around various uses of linear algebraic tools,
parity arguments, invariants, and generating functions in connection with
modular arithmetic. We also illustrate their comparative advantages and
inherent limitations. Generating function based techniques have been used
for analyzing problems on checkerboard tilings [3], checker-jumping [1] and
sumset of multisets [3], among others. Typically, generating functions are
used to restate and solve a given problem entirely within an algebraic envi-
ronment. In contrast, we use generating functions as an intermediate step
in exchanging a given game for an equivalent board game whose solutions
are almost transparent.

We need some terminology. The game board consists of labeled squares.
We use natural labeling: in the linear case, the squares can be labeled from
1 to 2n, and for rectangular boards we label the squares row by row. We
call an assignment of colors to the squares a coloring pattern. The block of
contiguous squares (in the linear case) or the rectangular block of squares
(in the 2-dimensional case) used for inverting colors, we call the switching
pattern. We refer to a switching pattern by indicating the position on the
board occupied by its leftmost or upper left corner square, respectively, and
by its size when needed.

For the linear board consisting of 2n squares, we have the following four
theorems.
Theorem 1 Suppose the board is colored so that adjacent squares have
alternate colors. If the possible moves are switching patterns of arbitrary
length, then the game can be won and the minimum number of moves needed
8 M.
Theorem 2 Suppose the board is colored as in Theorem 1, and the possible
moves are switching patterns of fixed length r. Then the game can be won
if and only if r|n, and the minimum number of moves needed is n.

Theorem 3 Suppose the board is arbitrarily colored. If the possible moves



are of arbitrary length, then the game can always be won and the minimum
number of moves needed is equal to the number of blocks of adjacent black
squares on the board.

Theorem 4 Suppose the board is arbitrarily colored and the possible
moves are switching patterns of fixed length r. Then the game can be won
if and only if the parity conditions

Z (ci—¢i—1) =0 mod 2

i=a modr

are met for all 0 < a < r. (Here c_1 = 0.) Equivalently, the game can be
won if and only if the sums

S = Z ¢, 0<a<r,

i=a modr

all have the same parity.

Note: In Theorems 1 and 3, the obvious solutions are minimal solutions,
but generally, there will be other minimal solutions as well. Theorem 1
is proved in Section 3, and Theorem 3 can be easily proved in the same
fashion. Theorems 2 and 4 can be proved by a single variable version of the
generating function arguments applied in Section 4. In both theorems, the
minimum solution is unique and is obtained by the greedy algorithm.

The following theorems concern a game board of size 2m x 2n.

Theorem 5 Suppose the board is checkerboard colored and the moves are
switching patterns of arbitrary sizes. Then the game can be won and the
minimum number of moves needed is m +n. A minimal solution is ob-
tained by switching the colors of the even numbered rows and odd numbered
columns. All minimal solutions can be completely characterized by their
common structure.

Theorem 6 Suppose the board is checkerboard colored and the moves are
of fized size s x t. Then the game can be won if and only if sjm and t|n,

2(s+t—1)
st

the minimum number of moves needed is -mn, and the solution is

UNIQUE.

Theorem 7 Suppose the board is arbitrarily colored and the moves are
arbitrarily sized. Then the game can always be won, there is generally no
unique minimal solution, and the minimum number of moves needed is
bounded above by mn + O(min(my/n, n\/m)) as m,n — .

Theorem 8 Suppose the board is arbitrarily colored and the moves are
of fixzed size s x t. Then the game can be won if and only if the parity
conditions (7) are met. The minimal solution is unique.



Note:  We present two proofs of Theorem 5 in Sections 3 and 4.2.
The characterization of the minimal solutions is given in Section 4.2. In
Theorems 6 and 8, the greedy algorithm where one goes through the board
row by row gives the minimal solution. In Section 4.1 we give the proof
for Theorem 8 and a sketch for Theorem 6. We believe that there is no
easy way to get a minimal solution in the case of Theorem 7, whose proof
is given in Section 4.3.

We discuss the linear algebraic technique in Section 2. In Section 3,
we explore parity arguments and generalized invariants to establish lower
bounds on the minimum number of moves for alternating and checkerboard
colorings. The most general approach is based on various uses of generating
functions as explained in Section 4. In the last part of the paper we list
further results.

2 Linear algebraic approach

The problems have a flavor similar to that of games like Merlin’s magic
squares ([6]-[8]). They can be expressed in terms of 0-1 problems, and
often they are analyzed and solved by linear algebraic techniques. In these
games, it is common to have a simple association between the N squares
of the board and the M potential moves. We define two N dimensional
vectors, ¢1 for the starting and c2 for the target coloring. The main idea
is that an arbitrarily colored board with N squares can be represented by
an N-dimensional 0-1 vector where 1 stands for a black square while 0 for
a white one. The potential moves can be described by matrix A of size
N x M with 0-1 entries by setting a;; = 1 if using the jth potential move
switches the value at position ¢, and 0 otherwise.

Clearly, every move should be used only once or not at all, and the order
of the moves is irrelevant. This is a common feature of additive games with
objects that alternate states [8]. We can describe the series of moves by a
set of 0-1 coordinates: 1 if the potential move is applied and 0 otherwise.
The corresponding vector of actual moves will be denoted by x. Therefore,
we can find the solution to any problem getting from coloring ¢; to c2 by
solving

co = c1 + Az mod 2. (1)

Note that the same solution will take us from ¢z to ¢;. In many situations
we have M = N. For instance, for Merlin’s game we get M = N = 9. In
this case, the necessary and sufficient condition for solving the problem of
getting from any ¢; to any ca by applying matrix A is that A be invertible
mod 2.

For example, in Theorem 8, for the board of size 2m x 2n with fixed
rectangular switching pattern of size s x ¢, we note that the problem can
be reduced to a truncated version of the board consisting of the upper left
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hand portion of size N = (2m — (s — 1)) x (2n — (t — 1)). For the moment
we only care about how the moves affect this portion of the board. By
labeling the squares row by row and defining the jth potential move as the
switching pattern positioned at the jth square, we get a lower triangular
matrix with ones on the diagonal. This fact guarantees a unique solution on
the truncated board which uniquely extends to the original. If it matches
the original coloring then we have the solution. The truncated version
forces conditions on the entire board captured by parity restrictions which
we will derive in Section 4. Note that the number of ones in the solution
vector x gives us the number of moves used.

Particular solutions to the games and sometimes even their uniqueness
can be derived by this technique, e.g., in the cases of Theorems 6 and
8, although without much insight into the size of the minimal solution.
One limitation to the linear algebraic restatement is that the 2-dimensional
structure of the original problem is reduced to a linear one which does not
reflect adjacency. Another concern is that while setting the problem in
matrix form seems fairly easy when there is a unique move associated with
every position, it becomes more complicated when M is larger than N.

We note that Lovész [5, Exercise 5.17] discusses color switching games
in graphs with NV vertices. In this case A can be set to be a symmetric 0-1
matrix of size N x N with all ones in its diagonal. It is proven that there
is always a solution to equation (1) with ¢; and ¢z being the all zero and
all one vectors, respectively (cf. [4] and [2]).

3 Parity arguments and invariants

If we are asking questions regarding existence or non-existence, parity and
invariance may first come to mind. The conditions alluded to in the previous
example with fixed size switching patterns are equivalent to a set of parity
conditions. Later on we will see how the parity conditions fall out as a
by-product of the generating function approach. For switching patterns of
arbitrary sizes, parity arguments do not seem to help. Of course, for these
problems existence is not an issue. Even more, a greedy approach provides
a direct solution. The question is whether this is best possible in the sense
that it requires the minimum number of moves. One might suspect that
parity based invariants may not advance our efforts to answer this question.
Fortunately, a slight generalization of the concept of invariance comes to
the rescue.

We consider an invariant to be an aspect of a given problem—usually a
numerical quantity—that does not change, even if many other properties do
change (cf. [9]). On the other hand, a pseudo-invariant is a quantity which
may or may not change at each step of a problem but when it does change,
it does so in a limited way.

For Problem 1, by setting ¢; = 1 if square i is black and 0 otherwise, we



use the following pseudo-invariant. Let

N-1
glci,c2, .. en) = Z lci — ciy1] (2)
i=1

which changes only by -2, -1, 0, 1, or 2 for any legal move. In Problem 1
we have N = 2n and note that the initial value of g is 2n — 1. It shows that
it takes at least n moves to reach 0.

We now show that Problem 2 reduces to Problem 1, and that the checker-
board coloring of a 2m x 2n board with the upper left hand corner colored
black, and with arbitrary switching patterns needs at least m + n moves.
The proof follows from Problem 1 once we find a “linearizable obstacle”
that is long enough. This will also work for many “mutilated boards” de-
rived from a checkerboard. A sufficient condition for this lower bound is
that the remaining board has a particular subset of squares called a “NW-
SE snake.” We call a sequence of contiguous squares a “NW-SE snake” if
it starts and ends at the NW and SE corners respectively, and always goes
from North to South and from West to East. If a board has a “NW-SE
snake” then reduction to Problem 1 works. As a matter of fact, we have a
structure with N = 2n +2m — 1 squares. Notice that any rectangular color
switching pattern will only change neighboring squares of the snake. Func-
tion g has the initial value 2n + 2m — 2 and the game ends with the value
0, so while it initially appears that we need n +m — 1 moves we actually
need one more, for a black end requires a color switch that decreases g by
at most 1. A similar argument can be used to obtain a lower bound on the
minimum number of moves for an arbitrarily colored mutilated board by
finding a NW-SE snake of maximum length which has a black square on at
least one end.

4 Generating functions

In this section, our strategy is to use generating functions to translate our
games into an algebraic description. We develop two equations (5) and (6)
for arbitrary and fixed size switching patterns, respectively. For arbitrarily
sized switching patterns, we reinterpret the result as another similar game
through which we may gain some insight into the first game. All theorems
of this paper can be proven by this technique.

A coloring pattern (or coloring) of a 2mx 2n game board is a (0, 1) matrix
C = [¢ij] o<i<em where ¢;; = 1 if and only if the square at position (i, j) is
0<j<2n
colored black. Its generating function is

bo(w,y) = cijaiyl.
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(For convenience, we specify that ¢;; = 0 outside of the game board, un-
less otherwise indicated.) For example, the checkerboard coloring with the
upper left-hand square colored black has generating function

bolwn) = 3 ow =t () (24) @

i<2m,j<2n
i+j even

Solving a coloring C' = [¢;5], i.e., finding a sequence of rectangular moves
that takes us between C' and the all white board is equivalent to finding
values for the coefficients mys; that solve the polynomial equation

i 1—2as 1—yt o
kalstxkyl< 1—1 > < 1 y> = Zcijxly] (4)

where the indices in the sum on the left are restricted to 0 < k < 2m,0 <
I <2n,0 < s<2m—kand 0 <t < 2m —[. (This congruence and all
others are understood to be modulus 2, unless otherwise indicated. As a
consequence, we can freely change the sign of any additive terms.) Then
myse = 1 if and only if the move of size sxt with upper left corner occupying
position (k,[) on the game board is included in the winning sequence.

If we multiply both sides of equation (4) by (1 — z)(1 — y) and collect
equal powers of = and y on the right, we get the equivalent equation

Z Mpstx®yt (1 —as)(1 —yt) = Z xiyd [Cij —Cij—1—Ci—1,4+ Ci71,j71} ;
0<i<2m
0Zj<2n

()

which will lead to a new game discussed in Sections 4.2 and 4.3.

Moreover, Section 4.1 will employ the result that, if the size of the moves
permitted in the original game is fixed, then my;sy = my with 0 < k <
2m — s and 0 <[ < 2n —t, and we can formally multiply both sides of
(4) by the factor (117;;) (11—:;%), expand the denominators into geometric
series, and collect equal powers of x and y on the right to get

Z mklxk'yl = Z xk‘yl [ Z (Cij — Ci,j—1 — Ci—1,5 + 61;17];1)} . (6)

k>0 i<k,i=kmods
>0 j<l,j=lmodt

Equations (5) and (6) yield a surprisingly diverse array of consequences for
the original game, several of which we will now explore in the next three
subsections.



4.1 When the permissible moves are fixed in size

Equation (6) applies when the moves permitted in our game are fixed in
size. On the left side of (6) the indices range over 0 < k < 2m — s and
0 <1 < 2n—t. Consequently, a solution exists if and only if the parity
conditions

Z (cij — Cij—1— i1 + cim1j-1) =0 (7)

i<k,i=kmods
j<l,j=lmodt

are met for all k and [ with k > 2m — s or [ > 2n — t. Furthermore, the
solution must be unique, and is specified precisely by the coefficients of x*y!
in the right hand sum of (6). Because ¢;;j = 0 outside of the game board,
this seemingly infinite set of conditions can be narrowed to those where
k < 2m and [ < 2n, which are the parity conditions promised in Section 2.

When we apply the above to the checkerboard coloring (3), the parity
conditions can be shown to imply that a solution exists if and only if s|m
and t|n. Moreover, in Zs, the right side of (6) simplifies to

Zx?ﬂiy2w[1+x5yt+(1+xs)< > yk>+(1+yt)< > xl”

ij 1<k<t—1 1<i<s—1

where the outside sum is taken over 0 < i < %% and 0 < j < 4. By counting

monomials, we conclude that the unique winning sequence of minimum
2(s+t—1)

length requires exactly ~

- mn 1moves.

4.2 When the permissible moves vary in size: the checkerboard
coloring pattern

We apply equation (5) when the moves permitted can be of any size. In
the case of the checkerboard coloring (3), equation (5) simplifies to

kalstﬂfkyl(l —x5)(1—yt) =

:1+x2my2n+(1+x2m)< > xi>+(1+y2")< > yj>.

1<i<2m—1 1<j<2n—1
(8)

We can interpret this equation as a new game played on a game board of
size (2m + 1) x (2n + 1). According to the right hand side, the squares
on the border are colored black except for the squares at positions (2m,0)
and (0,2n), which are white as well as all of the interior squares. By
reinterpreting the left hand sum of (8), the moves are “corner moves” where



the colors of four squares are switched per move, namely those occupying
positions (k,1), (k,l +t), (k+ s,1) and (k+ s,1 4+ t).

Now, there is a simple solution to the original checkerboard game, already
mentioned in Theorem 5, consisting of m+n moves. We can easily see from
our new game that this is a minimal solution, for our new coloring has
exactly 4m+4m—2 black squares, which will require at least [4m=n=2] —
m + n corner moves.

Furthermore, we can characterize all minimal solutions. Given any solu-
tion consisting of m+n corner moves, at least m-+n—2 of these moves must
account for four each of the 4m+4n—2 black squares. The black squares at
positions (0,0) and (2m,2n) must be divided between the last two moves;
for otherwise, if one of the moves accounts for both black squares, and thus
changes the colors of the squares at (0,2n) and (2m,0) from white to black,
then the other must perform the impossible task of restoring the original
colors at (0,2n) and (2m, 0) while allowing the colors at (0,0) and (2m, 2n)
to remain unchanged. The last two moves must then account for exactly
three each of the remaining black squares, and thus share a common white
square. If the common square is a corner white square then each of the
m~+n corner moves (including the last two) is composed of border squares,
and in the original game, corresponds to a rectangular move that spans
the board either horizontally or vertically. If the shared square is in the
interior of the board, say at (k,[), then the last two moves correspond to
two rectangular moves in the original game, the one with corners at (0,0)
and (k— 1,1 — 1), the other with corners at (k,l) and (2m —1,2n — 1).

4.3 When the permissible moves vary in size: arbitrary coloring
patterns

One might suspect that once restrictions are lifted on the variety of coloring
patterns considered and on the sizes of the rectangular moves used, the
generality would preclude anything of real interest from being said. Clearly,
any coloring on a 2m x 2n game board can be solved and requires no more
than 4mn moves. But can this upper bound be improved? We refer once
again to equation (5), and interpret it as a new game with corner moves,
as described in the previous subsection. Call the new coloring C” and let v
be the number of black squares in C’. Now clearly, a minimal solution to
the new game with coloring C” must have length at least il/. On the other
hand, we now describe a winning strategy for C” that requires no more than
1v moves. First, note that the multiplication of (4) by (1 — ) and (1 —y)
guarantees an even number of black squares in each row and each column
of C". Divide into pairs the black squares in each row except the last. Then

to each pair, apply the corner move consisting of two squares to account



10

for the pair and the other two squares applied to the last row. The black
squares in the last row will be handled automatically. We conclude that I,
the length of a minimal solution for C', has the same order of magnitude as
v, because %1/ << %1/.

If v is large, for instance of the order of mn, then the upper bound on
[ can be tightened by creating a two phase winning strategy for the new
game with coloring C’. Let S be a maximal set of disjoint corner moves
that each account for four black squares in coloring C’. Clearly |S| < 1v.
We play the moves in S. Next, let C” = [cg;”] be the new configuration
consisting of the remaining black squares in C’ unaccounted for by S. C”
inherits from C” the property that each of its rows and columns contains an
even number of black squares. Furthermore, C” has the delimiting property
that any two of its columns must contain at most one pair of black squares
occupying the same row. We use this property to bound the number of
black squares in C”. Partition the columns of C” as evenly as possible into
qg=1 f\'}‘% | subsets, so that each contains no more than |[y/m]+1 columns.
The black squares in each of the subsets can be divided between sets T
containing each of the black squares that shares its row with another black
square in the subset, and 75 containing the remaining black squares in the
subset. By the delimiting property of C” no pair of columns can contain
more than one pair of black squares from 77 in the same row, and thus
|T1| < 2(L\/F2LJ+1). Clearly, |T>| < 2m + 1 since each row contains at most
one square from T5. Thus, an upper bound on the number of black squares
in C” is

(7)) = TR () )

< Knym

for some constant K that serves for all m and n. In fact, we can choose
K = 15. We combine this argument with the same argument on the rows
of C” to find that 15min(m+/n, n\/m) is an upper bound on the number
of black squares in C” for all m and n. Then, applying the argument used
in the previous paragraph, we win C” in no more than % min(m/n, ny/m)
additional moves. Thus, we also have the inequality il/ <1< il/ +
L min(my/n, ny/m), ie., | = +v + O(min(my/n,ny/m)). Now Theorem 7
follows. For any coloring pattern C', since v < min (2m(2n+1), 2n(2m+1)),
we conclude that | < mn + O(min(m/n, n\/m)) as m,n — oo.

Finally, the inequality is in some sense best possible, for by beginning
with an entirely black pattern for C’ except for the last row and column,
and tracing back to the corresponding coloring for €', one can find that
the 2m X 2n game beginning with coloring C' = [¢;;] defined by ¢;; = 1 if
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and only if 4 and j are both even, requires exactly mn moves for a minimal
solution.

5 Conclusion

In this section we state some results that highlight the versatility of the
techniques presented in this paper, and suggest further directions that the
reader may wish to pursue. Theorems 9 and 11 follow directly by the
techniques used in Sections 4.3 and 4.2, respectively, and are left for the
reader as exercises. Roughly speaking, for board colorings generated by
tiles, the former one bridges the gap between Theorems 5 and 7 by the
degree of complexity imposed on the tiles. In fact, Theorem 9 extends
Theorem 5 to colorings defined by simple tiles, and it refines Theorem 7 by
allowing complex tiles. Theorem 10 relies on a more extensive argument
rooted in Section 4.1. We will present the proof in a forthcoming paper.

Theorem 9 Let M = [myj;] be a (0,1) matriz of size s X t. For any m
and n with sim and tln let Cpy, be a 2m X 2n matriz consisting of QTm . 27"
block copies of matrix M, and interpret Cpy as a coloring configuration in
a game of size 2m x 2n, where the moves are arbitrarily sized rectangular

patterns.

(i) If the matriz M has the property that each row of M is either equal to
or the binary complement of the first row, then the number of moves in a
minimal solution for Cpmy, is asymptotic to <-m+ % ‘n as m,n — 0o, where

c=1{i | mio+miti10=1mod2, 0<i< s}

and
d= |{] | mo,; + Mo, j+1 = 1 mod 2,0 S] < t}|

are the number of color switches in all rows and columns of M, respectively.

(ii) Otherwise, the number of moves in a minimal solution for Cmn is
asymptotic to ﬁ -mn as m,n — oo, where

k=1{(,7) | mij +mijs1+mit1j +mit1j+1 = L mod 2, 0 <i < s,
0<j<t}.

Here we let msj = moj, mir = mio and Mgz = Moo.

Theorem 10 Suppose the board is an arbitrarily colored circular one with
n squares, and the moves are arcs of adjacent squares of length r. Let
g =ged(n,r) and Sa =3 ,_, 10a, Cir Jor all 0 < a < g. If £ is even then
the game can be won if and only if Sq = 0 mod 2 for all a. On the other
hand, zf% is odd then it can be won if and only if all S, 0 < a < g, have
the same parity.
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Theorem 11 If the board is a 2n x 2n checkerboard and the moves are
arbitrarily sized squares then a minimal solution has length 4n —2 and can
be easily described.
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