
Annals of the Institute of Statistical Mathematics manuscript No.
(will be inserted by the editor)

Gambler’s ruin and winning a series by m games

Tamás Lengyel

Received: date / Revised: date

Abstract Two teams play a series of games until one team accumulates m
more wins than the other. These series are fairly common in some sports
provided that the competition has already extended beyond some number of
games. We generalize these schemes to allow ties in the single games. Differ-
ent approaches offer different advantages in calculating the winning probabil-
ities and the distribution of the duration N, including difference equations,
conditioning, explicit and implicit path counting, generating functions and a
martingale-based derivation of the probability and moment generating func-
tions of N. The main result of the paper is the determination of the exact
distribution of N for a series of fair games without ties as a sum of indepen-
dent geometrically distributed random variables and derive an approximation.

Keywords Gambler’s ruin · Distribution of the duration · Martingales ·
Probability and moment generating functions · Limit theorem · Chebyshev
polynomial of the first kind

1 Introduction

Two teams play a series of games until one team accumulates m more wins
than the other. Each game has three possible outcomes: team (or player as
used interchangeably in this paper) A wins with probability p, B wins with
probability q (0 < p, q < 1), or they tie with probability r = 1−p−q ≥ 0. The
series ends when one team has won m more games than the other and thus
becomes the winner of the series. From now on P (A) and P (B) = 1 − P (A)

Tamás Lengyel
Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
Tel.: +1-323-259-2516
Fax: +1-323-259-2704
E-mail: lengyel@oxy.edu



2 Tamás Lengyel

denote the respective probabilities that teams A and B win the series, and N
is the number of games played in the series or the duration.

The purpose of any series is to magnify the differences between the teams.
Tennis is discussed in Kemeny and Snell (1960) (in which “points” and “game”
take on the role of game and series of games, respectively) as a hybrid between
two popular procedures. To win a “game” in tennis the winner is required to
have four wins (as in the World Series or a “4 best of 7” series) and be ahead
by two. Apparently, Bernoulli was the first to analyze tennis. He found a
difference-equation-based double recurrence for the winning probability P (A)
and showed that P (A) can be written as a ratio of two seventh degree polyno-
mials in p/q (cf. Blom et al. (1994)). He also proposed handicapping in favor
of the weaker player in order to balance P (A) and P (B).

If p = q = 1/2 then the World Series with m2/2 required wins and the
winning by m games (or win-by-m games) series are comparable in the sense
that they yield an approximate mean duration of m2 for large values of m,
cf. Feller (1968), Kemeny and Snell (1960), Lengyel (1993), and Menon and
Indira (1983). (For the asymptotic magnitude of the variance see Menon and
Indira (1983).) In the general case, the former magnifies minute differences
in p − q by about 0.8m, while the latter multiplies them by m, thus making
the latter series more efficient and favorable. Any mixture, e.g., a “game” in
tennis, lies in between in terms of efficiency. In fact, Siegrist (1989) studied
special hybrids, the (n, k) contests in which the first team or player to win at
least n games and to be ahead of its opponent by at least k games wins the
contest. Championship series are often in a (4, 1) format (e.g., World Series),
a tennis “game” is in a (4, 2) format while a tennis set (without tiebreaker)
is in a (6, 2) format. Our win-by-m games problem is simply a contest in the
(m,m) format. Siegrist obtained results for the probability of winning and the
expected length of the (n, k) contest, and compared different formats from the
point of view of the duration and the power of these contests as “tests” in
order to determine the stronger team or player. For example, he observed that
(3, 2) is a better format than (4, 1) in both senses if p and q are sufficiently
close to 0.5.

Gambler’s ruin problems offer a special case of the win-by-m games series.
In fact, in this paper we will only consider this case. Assume that each of two
players has a capital of m dollars. In each game a dollar can change hands
between the two players: player A pays a dollar to player B with probability
p or a dollar is paid to player A by player B with probability q, and no money
is exchanged with probability r = 1−p− q. The game is over when one player
goes bankrupt, i.e., when the other player amasses m more wins.

In some cases, and typically when we want to determine the winning prob-
abilities only, we can ignore games that end in a tie, and therefore, we will
then use

p′ =
p

p+ q
and q′ =

q

p+ q
(1)

to denote the probability of winning and losing a game, respectively, given
that the game is not a tie.
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In Section 2, we give a brief historical overview. Various random walk based
approaches are presented in Section 3. They lead us to different derivations of
the winning probabilities but not necessarily of the expected duration E(N).

The final Section 4 is devoted to martingales, and it shows a fairly simple
way to derive the probability generating function pm(x, p, q) and the moments
of N. We determine the exact distribution of N and some of its asymptotic
properties for p = q = 1/2 in Theorems 5 and 6, by using its moment gener-
ating function. We prove that N can be viewed as a sum of independent but
not identically distributed random variables of various geometric distributions.
The main results of the paper are summarized in Theorems 3, 5, and 6. Some
details will be left to the reader.

A generalization of the gambler’s ruin problem to higher dimensions is con-
sidered in Kmet and Petkovšek (2002). The exact and asymptotic expected
duration is determined in some special cases with identical goals in each di-
mension. It corresponds to playing a series of different types of games and
stopping when a player wins by m games in any type.

Interested readers can find other ways of generalizing gambler’s ruin in
Flajolet and Huillet (2008). They discuss an urn-based model which can be ap-
plied to a modification of the gambler’s ruin in which the single game winning
probabilities are affected by the number of previous wins and losses, e.g., the
winning probability increases as the accumulated number of wins does. This
modification results in a decreased expected duration. The authors exhibit
limit theorems and a decomposition of the duration into a sum of independent
random variables of different geometric distributions in the case corresponding
to winning by m games.

2 Gambler’s ruin by difference equations and other approaches

Gambler’s ruin problems are typically represented by a random walk on the
set of integers. A point moves to the right or to the left with probability p or
q, or stays in place with probability r = 1− p− q. The walk ends when it hits
either of the two absorbing states m and −m. To make referencing easier we
set the independent and identically distributed random variables

Zi =


1, with probability p,
−1, with probability q,

0, with probability r,
(2)

i = 1, 2, . . . , n, indicating win or loss by team A, or tie in the ith game. Clearly,
Sn =

∑n
i=1 Zi is the difference in the number of games won by teams A and

B after n games, and team A wins the series if for some n : Sn = m and
|Sk| ≤ m− 1 for all k < n. The determination of P (A), the probability of this
occurring, is referred to as Huygens’ fifth problem in Blom et al. (1994).

Often recurrence relations, implied by difference equations, are used to
determine both the winning probabilities and the expected length of the game
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as in (Feller 1968, Chapter XIV) and Problem 1582 (1999). For example, it
can be seen in (Feller 1968, volume 1, identity (2.4) on p. 345) that

P (A) =
λm

1 + λm
=

pm

pm + qm
and P (B) =

qm

pm + qm
(3)

with
λ = p′/q′ = p/q (4)

if p 6= q, and P (A) = P (B) = 1/2 otherwise. The role of λ will become
transparent in the martingale approach (Section 4). Note that the winning
probabilities depend only on the p to q ratio and not on r (as ties will only
affect the length of the game). In addition to this,

E(N) =

{
m(λm−1)

(p−q)(λm+1) = m(P (A)−P (B))
p−q , if p 6= q,

m2

2p , if p = q,
(5)

cf. (Feller 1968, volume 1, Problem #5, p. 367). Some related problems and
facts are discussed in Lengyel (2008). It also offers a way to introduce ties to
the classical problem via a decomposition of the duration N into a random
sum of N ′ independent and identically distributed random variables, the ith
term being an arbitrary nonnegative number Ti, i = 1, 2, . . . , N ′, of ties
immediately before the ith win or loss followed by the win or loss, i.e., N =∑N ′

i=1(Ti + 1). The distribution of Ti + 1 is geometric with parameter 1 − r.
Thus, for instance, we can relate E(N) to E(N ′), the expected duration in the
classical problem, by Wald’s identity.

An alternative approach for determining P (A) and E(N) is to apply the
theory of Markov chains (cf. Kemeny and Snell (1960)). We can also use condi-
tioning to calculate P (A). One way to find probabilities of “competing” events
is to use a conditional setting. We consider the random walk (with no absorb-
ing states) on the set of integers that starts at 0. Now, let E,E1 and E2 be
the events that the random walk ever visits −m, visits m before −m, and −m
before m, respectively. It is easy to see (e.g., Feller 1968, volume 1, identity
(2.8) on p. 347) that

P (E) =

{
( qp )m, if p > q,

1, if p ≤ q.
(6)

For p > q, we have ( qp )m = P (E) = P (E|E1)P (E1) + P (E|E2)P (E2) =
( qp )2mP (A)+(1−P (A)) which immediately implies (3). Note that identity (6)
can be rephrased as P (supn≥0 Sn ≥ m) = (p/q)m if q > p and m ≥ 0, thus
identifying the distribution of supn≥0 Sn as geometric.

3 Lattice path counting and generating functions

We can use implicit and explicit lattice path counting and generating functions
to derive the winning probabilities and the distribution of duration.
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3.1 Path counting

The first approach requires only implicit calculations. The probability P (A) is

P (A) =
∑
n≥0
t≥0

c(n,m, t) pn+mqnrt (7)

where the factor c(n,m, t) counts the number of ways we can arrange n + m
wins, n losses, and t ties (from the point of view of team A) so that team A
reaches its goal of being ahead of team B by exactly m games for the first
time after the last game. By symmetry,

P (B) =
∑
n≥0
t≥0

c(n,m, t) qn+mpnrt.

We observe that P (A)/P (B) = pm/qm and P (A) + P (B) = 1; therefore,

P (A) =
pm

pm + qm
and P (B) =

qm

pm + qm
.

On the other hand, c(n,m, t) explicitly counts the number of ways a random
walk on the plane going from (0, 0) to (2n + m + t,m) (i.e., with n + m up
steps (1, 1), n down steps (1,−1), and t horizontal steps (1, 0)) first reaches the
boundary |y| = m on its last move. We define d(n,m) = c(n,m, 0). Clearly,

c(n,m, t) =
(

2n+m+ t− 1
t

)
d(n,m) (8)

for the last move cannot be a (1, 0).
For m = 2 we have c(n, 2, t) =

(
2n+2+t−1

t

)
2n since after pairing the non-

horizontal moves, each pair contains a (1, 1) and a (1,−1) move which yields
d(n, 2) = 2n (cf. Problem 1582 (1999)). If m = 3 then a recurrence-based
approach (cf. Stern (1979)) or a standard block walking argument yields

Theorem 1 For m = 2 and 3, the number of paths on the plane from (0, 0)
to (2n + m,m) with n + m up steps (1, 1) and n down steps (1,−1) and first
passage to |y| = m on the last move is d(n,m) = mn.

Now, by plugging this into (7), we can determine P (A). Alternatively, we
can ignore the tied games and focus on winning and losing the other games,
but now with corresponding probabilities p′ and q′ given in (1). Clearly, for
m = 2 and 3, P (A) =

∑∞
n=0 d(n,m)(p′)n+m(q′)n =

∑∞
n=0m

n(p′)n+m(q′)n =
(p′)m/(1−mp′q′) = pm/(pm+qm), and the expected value and standard devia-
tion of the duration can be easily computed by (8). For example, if p = q = 1/2
then (E(N), σ(N)) = (4, 2

√
2) and (9, 4

√
3) if m = 2 and 3, respectively.

In general, we can use the theory of lattice path counting of Mohanty
(1979) and Narayana (1979), Theorem 2 of Section 2.2 of Mohanty (1979) in
particular, and that of the enumeration of Dyck paths to obtain the number of
paths going between two (horizontal) boundaries, but the calculations become
cumbersome beyond small values of m.
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3.2 Generating functions

By using the generating function of the probability of absorption at m (i.e.,
winning by team A) at the nth game (Feller 1968, volume 1, pp. 349-351), we
can systematically, though implicitly, obtain d(n,m) and any moment of the
random variable N. In fact, if r = 0 then, by using difference equations, (Feller
1968, Chapter XIV) derives

gm(x, p, q) =
∞∑
n=0

P (N = n, Sn = m)xn =
1

λm1 (x) + λm2 (x)
(9)

and for the probability generating function of the duration N of the game

pm(x, p, q) =
∞∑
n=0

P (N = n)xn =
(

1
λm

+ 1
)

1
λm1 (x) + λm2 (x)

=
1

P (A)
gm(x, p, q)

(10)

with λ1(x) = 1+
√

1−4pqx2

2px and λ2(x) = 1−
√

1−4pqx2

2px . Remarkably, the length
of the game has no effect on the winning probabilities (cf. Samuels (1975)).

Theorem 2 (Samuels) The duration N and the end point SN , i.e., who
wins, are independent random variables.

Interested readers can find a proof using generating functions and an ex-
tension to the case with ties allowed in single games in Lengyel (2008). (From
now on Theorem 2 refers to the extended version.) For a general r ≥ 0, by
calculations similar to that in Feller (1968), we can prove

Theorem 3 We set r = 1−p−q ≥ 0, λ = p/q, λ1(x) = 1−rx+
√

(1−rx)2−4pqx2

2px ,

and λ2(x) = 1−rx−
√

(1−rx)2−4pqx2

2px . The generating function of the probability
of the duration with team A winning at the nth game and the probability gen-
erating function of the duration N of the game are given by (9) and (10),
respectively. The duration N has no effect on the winning probabilities.

We note that the independence also follows by a simple argument similar to
the one used in Section 3.1.

Clearly, g1(x, p, q) = px
1−rx and gm(x, p, q) = pmxm

(1−rx)m−2((1−rx)2−mpqx2) for
m = 2 and 3 by Section 3.1. We note that P (A) = gm(1, p, q) easily re-
duces to (3) and E(N) = g′m(1, p, q) + g′m(1, q, p) = p′m(1, p, q) leads to
(5) since it is easy to see that the power series gm(x, p, q) and pm(x, p, q)
are both convergent in an open circle of radius 1/(1 − (

√
p − √q)2) which

thus contains 1 if p 6= q. After intensive simplifications, we can determine
var(N) = p′′m(1, p, q) + p′m(1, p, q) − (p′m(1, p, q))2. If p = q then by Abel’s
convergence theorem, the remaining part of (5) and var(N) = m2(2m2+1−6p)

12p2

follow. This latter yields var(N) = 4m
(
m+1

3

)
if p = q = 1/2 (as it was observed

for m = 2 and 3 in Section 3.1). We note that g′′m(1, p, q) was determined for
p = q = 1/2 in Beyer and Waterman (1979), and Bach (1997) obtained the first
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six moments and cumulants of N. He also discussed the arithmetic complexity
of computing the rth moment and a connection to Brownian motion. Aoyama
et al. (2008) use a similar technique to determine the exact first-passage time
distribution of a modified random walk. We will present a martingale-based
alternative proof of Theorem 3 in Section 4.3 (although one relying on Theo-
rem 2).

We note that Kac (1945) obtained the exact probability of the duration in
the form of an alternating trigonometric sum of m terms for p = q = 1/2. This
guarantees an asymptotically exponential decrease of P (N = n) at the rate
cos(π/2m) as n → ∞. Karni attempted to find a simple form for P (N = n)
if p+ q = 1 in Karni (1977) and Karni (1978), but only succeeded with some
restriction on the length of the duration.

4 Martingale approach

In this section we approach our problems by defining associated martingales
(cf. Baldi et al. (2002), Blom et al. (1994), Lalley (2003), and Williams (1991)).
We say that the sequence {Yn} forms a martingale with respect to the sequence
of random variables {Xn} if E(|Yn|) < ∞ and E(Yn|X1, X2, . . . , Xn−1) =
Yn−1, n ≥ 2. We observe the Xis until they satisfy some prescribed stopping
condition. We call the number N of the observed Xis a stopping time. If
P (N < ∞) = 1, E(|YN |) < ∞, and limn→∞E(Yn|N > n)P (N > n) = 0 then
E(YN ) = E(Y1) by the Optional Stopping Theorem (e.g., Blom et al. (1994)).

Note that for our stopping rule E(N) < ∞ and limn→∞ P (N > n) = 0.
In fact, by a standard argument, the series can be viewed in blocks of 2m
consecutive games. If a block corresponds to a run (or winning streak) of 2m
wins for either team then that team wins (unless the game has already ended).
Therefore, P (N > 2m) ≤ 1− p2m and similarly, P (N > k · 2m) ≤ (1− p2m)k,
and the distribution of N exhibits an exponentially decaying right tail.

We note that for any i ≥ 1, Mn = Sn−nE(Zi) = Z1+Z2+· · ·+Zn−nE(Zi)
defines a martingale with respect to the independent and identically dis-
tributed random variables Zis given in (2). In general, Wald’s (first) equa-
tion (e.g., Baldi et al. (2002), Blom et al. (1994), and Lalley (2003)) yields
E(SN ) = E(N)E(Zi) since E(N) <∞.

We also define the constant λ in order to guarantee E(λ−Zi) = 1. This
yields λ = p/q, in agreement with (4), independently of r. It can be verified
that the sequence

Rn = λ−Sn , n = 1, 2, . . . , (11)

is also a martingale with respect to the Zis. (Sometimes it is referred to
as Wald’s martingale.) In fact, E(Rn|Z1, Z2, . . . , Zn−1) = λ−Sn−1E(λ−Zn) =
λ−Sn−1 = Rn−1.



8 Tamás Lengyel

4.1 Winning probability

Note that E(|RN |) and E(Rn|N > n) both are bounded from above by
max{λ−m, λm}, thus the Optional Stopping Theorem applies: E(RN ) =
E(R1) = E(λ−Z1) = 1. On the other hand,

E(RN ) = E(λ−SN ) = P (A)λ−m + P (B)λm = λm + P (A)(λ−m − λm)

which yields (3) for p 6= q (cf. Feller (1968)).

4.2 Expected length

If λ 6= 1 then by Wald’s equation and E(Zi) = p− q 6= 0 it follows that

E(N) =
E(SN )
E(Zi)

=
mP (A)−mP (B)

p− q
,

and by (3)

E(N) =
m(λm − 1)

(p− q)(λm + 1)
.

If p = q then we can use Wald’s second equation (e.g., Baldi et al. 2002,
p. 37): E

(
(SN −NE(Zi))2

)
= E(N) var(Zi) which turns into E(N) =

E(S2
N )/var(Zi) = m2/(2p), verifying the remaining part of (5).

4.3 Higher moments of N

The random variable Rn is a special case of likelihood ratio martingales (see
(Feller 1968, volume 2, pp. 211-212) and Lalley (2003)). In general,

Rn(θ) =
n∏
i=1

eθZi

φ(θ)

with the moment generating function φ(θ) = E(eθZi) = peθ+qe−θ+r of Zi for
any real θ. As above, by the Optional Stopping Theorem, we get E(RN (θ)) =
E(R1(θ)) = 1. Now we can observe that φ(− lnλ) = 1 and thus, in fact, the
Rn defined in (11) is Rn = Rn(− lnλ) = λ−Sn .

Remark. Let pZi(x) =
∑
k x

kP (Zi = k) be the probability generating func-
tion of Zi (this time defined for an integer valued random variable Zi taking
both positive and negative values; therefore, pZi(x) is a Laurent polynomial).
If λ 6= 1 then the equation pZi(x) = E(xZi) = φ(lnx) = 1 has two roots:
x = 1/λ = q/p and the trivial x = 1. We note that this and other properties
of pZi(x) are applied in Ethier and Khoshnevisan (2002) to obtain bounds on
P (A) for a more complicated profit variable Zi.
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The convex function φ(θ) takes its minimum 1 − (
√
p − √q)2 at θmin =

− 1
2 lnλ. Let us assume that θ ≥ 0 and λ = p/q > 1 which guarantee

that φ(θ) ≥ 1. This will also be the case for all θ if p = q. Then, by way
of Wald’s third equation in Lalley (2003), i.e., for any bounded stopping
time N ∧ n (the truncation to the smaller of N and n) : 1 = E(RN∧n(θ)) =
E
(
eθSN∧n

φN∧n(θ)

)
, and by the dominated convergence theorem as n→∞, it follows

that

1 = E

(
eθSN

φN (θ)

)
. (12)

In fact, limn→∞
eθSN∧n

φN∧n(θ)
= eθSN

φN (θ)
since we have P (N < ∞) = 1 (as E(N)

is finite here), eθSN∧n ≤ max{eθm, e−θm} and φ(θ) ≥ 1; thus, eθSN∧n

φN∧n(θ)
≤

max{eθm, e−θm} for all n ≥ 0.
By an argument similar to the derivation of the probability generating

function of the first passage time to 1 in Williams (1991), the probability
generating function (10) can be also easily derived from (12) without the
technical overhead of difference equations referred to in Section 3.2. Toward
this end, we now substitute 1/x = φ(θ) = p/u + qu + r with u = e−θ,

which yields u = 1−rx−
√

(1−rx)2−4pqx2

2qx and u−1 = 1−rx+
√

(1−rx)2−4pqx2

2px since
x < 1 implies θ > 0 and thus u < 1 if p > q. If p = q then u ≤ u−1

for all x ≤ 1, thus u ≤ 1. We shall need Theorem 2 of Section 3.2. By
conditioning in (12) we obtain that 1 =

∑∞
n=0E(eθSNxN |N = n, Sn =

m)P (N = n, Sn = m) +
∑∞
n=0E(eθSNxN |N = n, Sn = −m)P (N = n, Sn =

−m) =
∑∞
n=m e

θmP (A)P (N = n)xn +
∑∞
n=m e

−θmP (B)P (N = n)xn =
E(eθSN )E(xN ). Thus,

pN (x) = E(xN ) = 1/E(eθSN ) = 1/(P (A)u−m + P (B)um) (13)

and (10) follows immediately for all x ≤ 1 (since 1/x = φ(θ) ≥ 1) and arbitrary
choices of p and q (as the case q > p is similar). Note that we can extend the
range of x if p 6= q by Section 3.2.

In addition to this, if p 6= q then by expanding pN (x) about x = 1 we
can determine the moments of N. We define the inverse function of φ: let
φ−1(u) be the unique value v : − 1

2 lnλ ≤ v <∞, so that φ(u) = v. (The case
λ < 1 is similar.) Note that we can take the derivative of φ−1(u) repeatedly
around 1. From pN (x) = 1/E(eθSN ) with θ = φ−1(1/x) we can derive the
probability generating function of N which can help us to determine exactly
or to approximate the probability distribution of N. In fact, carrying out the
moment calculations by applying the approximation is a little easier than using
(10) directly. For instance, by p′N (1) = E(N) and the first order approximation
of the function φ−1 we get (5). The second order approximation and var(N) =
p′′N (1) + p′N (1) − (p′N (1))2 lead us to the calculation of the variance of N
provided that pN (x), thus φ−1(x), is differentiable around 1, i.e., if p 6= q.

On the other hand, if p = q then we can use our findings of Section 3.2.
Combining these cases, we obtain
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Theorem 4

var(N) =


m(P (A)−P (B))

p−q

(
p+q

(p−q)2 − 1
)
− 4m2P (A)P (B)

(p−q)2 , if p 6= q

m2(2m2+1−6p)
12p2 , if p = q ≤ 1/2.

Higher moments of N can be derived in a similar fashion. The moment gener-
ating function of N can be obtained by MN (t) = E(etN ) = pN (et) (or simply
by substituting t = − lnφ(θ) into identity E(1/φN (θ)) = 1/E(eθSN ) if p 6= q).

4.4 The distribution of N if p = q = 1/2

Note that for the contest in (m, 1) format, i.e., the best m of 2m − 1 (or
World) series, the convergence of the duration WSm to the normal variable is
completely characterized in Menon and Indira (1983). Unfortunately, as they
note it, the normal approximation is not valid for values of p close to 0, 1/2, or
1. In the case of p = q = 1/2, Stadje (1998) found that (2m−WSm)/(

√
2m),

as m → ∞, has the limit distribution of the absolute value of a standard
normal random variable. We also note that a remarkable closed form was
given by Stirzaker (1988) for the double generating function of 2m−WSm, if
p = q = 1/2.

We now focus on the distribution of the duration N for contests in (m,m)
format with p = q = 1/2. The moment generating function of Zi is φ(θ) =
cosh(θ), hence by identity (13) the probability generating and moment gener-
ating functions of N are pN (x) = 1/ cosh (mθ) = 1/Tm(cosh(θ)) = 1/Tm(1/x)
with θ = arccosh(1/x) ≥ 0 (cf. Feller 1968, volume 1, identity (5.4) on p. 352)
and

MN (t) =
1

Tm(e−t)
, (14)

respectively, with Tm(x) being the mth Chebyshev polynomial of the first kind
(cf. Comtet (1974) and Weisstein (2002)). As one of the referees pointed it out,
this relation can be also derived directly from (9) using the fact that

Tm(x) =
(x−

√
x2 − 1)m

2
+

(x+
√
x2 − 1)m

2
.

Note that the relation of Chebyshev polynomials of the second kind to Dyck
path enumeration has been explored elsewhere, e.g., in Krattenthaler (2001).

In this case, we find below the exact distribution of N in terms of a sum
of independent but not identically distributed random variables of various
geometric distributions (Theorem 5). We also derive the limit Theorem 6 which
can be used to approximate the distribution of N. We note that the methods
presented here and leading to Theorems 5 and 6 do not seem to generalize to
unequal single game winning probabilities or when r > 0.
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4.4.1 Exact distribution

Theorem 5 Let p = q = 1/2 and ri = cos (2i−1)π
2m , i = 1, 2, . . . ,m, be the

roots of the mth Chebyshev polynomial of the first kind. We define Ri : 0 <
Ri = −rirm−i+1 = r2i < 1, i = 1, 2, . . . bm/2c, and consider bm/2c independent
random variables Xi ∼ Geometric(1 − Ri), i = 1, 2, . . . , bm/2c. In this case,
the distribution of the half-duration N/2 is identical to that of

∑bm/2c
i=1 Xi+δm

with δm = 1/2 if m is odd and 0 otherwise, yielding E(N) = m2 and var(N) =
2m2(m2 − 1)/3.

Proof of Theorem 5. We factor the mth Chebyshev polynomial to find a
decomposition of random variable N/2 into a sum of other variables. Observe
that Tm(x) = 2m−1

∏m
i=1(x − cos (2i−1)π

2m ) (cf. Weisstein (2002)). Clearly, the
roots cos (2i−1)π

2m and cos (2m−2i+1)π
2m , i = 1, 2, . . . , bm/2c, are symmetric about

zero. Thus every Ri = −rirm−i+1, i = 1, 2, . . . , bm/2c, falls strictly between
zero and one. If m is odd then there is an extra root at zero.

We prove the theorem for m even. In this case, we have Tm(x) =
2m−1

∏bm/2c
i=1 (x2 −Ri). First we note that

m∏
i=1

(1− ri) =
bm/2c∏
i=1

(1−Ri) = 1/2m−1 (15)

by the generating function (cf. Comtet (1974) and Weisstein (2002))

g(t, x) =
1− xt

1− 2xt+ t2
=
∞∑
m=0

Tm(x)tm =
1
2

+
1
2

1− t2

1− 2xt+ t2
. (16)

In fact, we have Tm(1) = 2m−1
∏bm/2c
i=1 (1− Ri) = 2m−1

∏m
i=1(1− ri). On the

other hand, the coefficient of tm of g(t, 1) = 1/(1− t) is equal to Tm(1), hence
[tm] g(t, 1) = 1 = 2m−1

∏m
i=1(1− ri).

Therefore, by identities (14) and (15) we have that MN/2(t) = 1
Tm(e−t/2)

=
1

2m−1
∏bm/2c
i=1 (e−t−Ri)

= 1

2m−1
∏bm/2c
i=1 (1−Ri)

∏bm/2c
i=1

(1−Ri)et
1−Riet =

∏bm/2c
i=1 MXi(t)

with Xi ∼ Geometric(1−Ri), i = 1, 2, . . . , bm/2c.
If m is odd then there is an extra factor x in Tm(x) which results in an

extra factor et/2 in MN (t/2) which is the moment generating function of the
constant 1/2. We leave the details to the reader. The expected value and
variance of N follow by Section 4.2 and Theorem 4. ut

Remark. An alternative derivation of E(N) and var(N) also follows from
the above decomposition, and higher moments can be computed similarly.
First, we define the generating function of the kth power sum of the roots of
Tm(x) by S(x) =

∑∞
k=1 Skx

k, Sk =
∑m
i=1 r

k
i , k = 1, 2, . . . , and the correspond-

ing alternating generating function of the elementary symmetric polynomials:
Π(x) =

∑∞
k=0(−1)kΠkx

k, Π0 = 1, Πk =
∑

1≤i1<i2<···<ik≤m ri1ri2 · · · rik , k =
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1, 2 . . . ,m, and Πk = 0 if k > m. The Newton–Girard formulas can be rewrit-
ten as

−xΠ ′(x)/Π(x) = S(x). (17)

Next we derive that µm =
∑bm/2c
i=1

1
1−Ri + δm = m2/2 and σ2

m =∑bm/2c
i=1

Ri
(1−Ri)2 = m2(m2 − 1)/6 for the half-duration. To prove these identi-

ties we observe that
∑m
i=1

1
1−ri = 2

(∑bm/2c
i=1

1
1−Ri + δm

)
and

∑m
i=1

ri
(1−ri)2 =

4
∑bm/2c
i=1

Ri
(1−Ri)2 , then develop the left hand sides as series involving

power sums of the roots ri. For instance,
∑m
i=1

1
1−ri =

∑m
i=1

∑∞
k=0 r

k
i =∑∞

k=0

∑m
i=1 r

k
i =

∑∞
k=0 Sk and similarly,

∑m
i=1

ri
(1−ri)2 =

∑∞
k=1 kSk.

We specialize (17) by setting Π(x) =
∏m
i=1(1 − rix) = xmTm(1/x)/2m−1

which yields

S(x) = −m+
T ′m(1/x)
xTm(1/x)

. (18)

Clearly, Tm(1) = 1, T ′m(1) = m2, T
′′

m(1) = m2(m2 − 1)/3, and T
′′′

m (1) =
8m
(
m+2

5

)
by deriving the partial derivatives gx(t, 1), gxx(t, 1), and gxxx(t, 1)

based on (16). For instance,
∑∞
m=1 T

′
m(1)tm = gx(t, 1) = t (1+t)

(1−t)3 =∑∞
m=1m

2tm. In general, using a standard formula to calculate the nth deriva-
tive of the reciprocal of the function 1 − 2xt + t2, we can derive that
T

(n)
m (1) = 2n−1n!

((
m+n
m−n

)
+
(
m+n−1
m−n−1

))
for n ≥ 1. Now we can calculate

S(1) +m =
∑∞
k=0 Sk and S′(1) =

∑∞
k=1 kSk by (18) to obtain µm and σ2

m.
Despite the decomposition, other moments require more involved calcu-

lations, e.g., we need
∑bm/2c
i=1

2−3Ri+R
2
i

(1−Ri)3 in order to obtain the third central
moment of the half-duration.

We also note that there has been some interest in determining the asymp-
totic behavior of the raw moments of the duration N as m → ∞. The nor-
malized duration N/m2 captures the asymptotic features even better. In fact,
the first few raw moments are µ′1 = 1, µ′2 = 5/3 + o(1), µ′3 = 61/15 + o(1),
µ′4 = 277/21 + o(1) and µ′5 = 50521/945 + o(1) as m → ∞, and accord-
ing to Bach (1997), the error terms are functions of 1/m2. The moment
µ′k = E

(
(N/m2)k

)
converges to a finite positive constant ck for any inte-

ger k ≥ 1 as m→∞, however, determining ck for large values of k remains a
numerically challenging problem.

4.4.2 Approximating the distribution

Unfortunately, none of the usual criteria (cf. Weisstein (2002)), e.g., the Lya-
punov condition, work here and thus, this approach does not guarantee the
normal limit law for N . However, we can approximate the distribution of N
by using only a small percentage of the largest terms of the decomposition in
Theorem 5. For instance, let f(m) = bcmc with any c : 0 < c < 1, and take
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the sum Y1 =
∑f(m)
i=1 Xi. The above arguments show that N/2 = Y1 + E1 so

that E(2Y1) ∼ m2, E(E1) = Θ(m), var(2Y1) ∼ 2m4/3, and var(E1) = Θ(m).
Taking this a little further, we can approximate N by using only an asymp-

totically zero percent of the terms plus an approximately normally distributed
error term of a smaller magnitude.

Theorem 6 Let f(m) = bm1−εc with any ε : 0 < ε < 1/5 and consider
the sum Y2 =

∑f(m)
i=1 Xi (where the Xis are as in Theorem 5). For N/2 =

Y2 + E2 we get that E(2Y2) ∼ m2, E(E2) = O(m1+2ε), var(2Y2) ∼ 2m4/3,
and var(E2) = O(m1+4ε) and E2 has an asymptotically normal distribution.

Proof of Theorem 6. We consider only the case with m even. In
fact, we need that

∑bm/2c
i=1

1
1−Ri =

∑f(m)
i=1

1
((2i−1)π/(2m))2 + mO( m2

f(m)2 ) =
4m2

π2

∑f(m)
i=1

1
(2i−1)2 + O(m1+2ε) = 4m2

π2
π2

6
3
4 + O(m1+2ε) = m2

2 + O(m1+2ε).

Here we used the approximation 1 − Ri =
( (2i−1)π

2m

)2 + O(m−4) for
Ri = cos2 (2i−1)π

2m where i ≤ cm for some sufficiently small c > 0.
Similarly,

∑bm/2c
i=1

Ri
(1−Ri)2 =

∑f(m)
i=1

1
((2i−1)π/(2m))4 −

∑f(m)
i=1

1
((2i−1)π/(2m))2 +

mO( m4

f(m)4 ) = 16m4

π4

∑f(m)
i=1

1
(2i−1)4 −

m2

2 + O(m1+4ε) = 16m4

π4
π4

90
15
16 −

m2

2 +

O(m1+4ε) = m4

6 −
m2

2 +O(m1+4ε).
We set g(x, n) =

∑∞
k=0 k

nxk = An(x)
(1−x)n+1 , n ≥ 1, with An(x) being the nth

Eulerian polynomial (cf. Comtet (1974) and Lengyel (1996)), which guarantees
that g(1 − p, k) ≤ k!p−(k+1) since Ak(x) ≤ k! if |x| ≤ 1. Observe that for
the raw moments µ′k = E(Xk

i ) =
∑∞
j=1 j

k(1 − p)j−1p = p
1−pg(1 − p, k) ≤

p
1−pk!p−(k+1) = O(m2k/f(m)2k) holds with p = 1 − Ri = Θ(f(m)2/m2) for
i :f(m) ≤ i ≤ (1 + δ)f(m) with any sufficiently small δ > 0. This implies an
upper bound on the magnitude of the central moments µk = E((Xi−EXi)k) =∑k
j=0

(
k
j

)
(−1)k−jµ′j(µ

′
1)k−j = O(m2k/f(m)2k) by induction on k.

Now we check the Lyapunov condition (Weisstein (2002)) for E2 =∑bm/2c
i=f(m)+1Xi with some positive α. First we note that E

(
(Xi −EXi)2+α

)
≤

P (|Xi −EXi| < 1) +E
(
(Xi −EXi)4

)
= E

(
(Xi −EXi)4

)
+O(1) as m→∞.

This leads to
maxf(m)+1≤i≤bm/2cE(|Xi − EXi|2+α)∑bm/2c

i=f(m)+1E(|Xi − EXi|2+α)
≤

maxf(m)+1≤i≤bm/2cE(|Xi − EXi|4) + am∑bm/2c
i=f(m)+1E((Xi − EXi)2)− bm

≤

E
(
(Xf(m)+1 − EXf(m)+1)4

)
+ am∑bm/2c

i=f(m)+1 var(Xi)− bm
≤

Cm8

f(m)8∑bm/2c
i=f(m)+1

Ri
(1−Ri)2

≤

Cm8

f(m)8∑b(1+δ)f(m)c
i=f(m)+1

Ri
(1−Ri)2

= O

(
m8

f(m)8

f(m) m4

f(m)4

)
= O

( m4

f(m)5
)

= o(1)
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for any sufficiently large C > 0, positive am = O(1) and bm = O(m) as
m → ∞. Hence the limit of the leftmost ratio is 0, and the approximate
normality of E2 follows. ut

From the above proof it is clear that the condition on ε : 0 < ε < 1/5 can
be improved.
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