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Abstract: In 1984, Lengyel first introduced a recurrence involving Stirling numbers in his paper [Len84].
These numbers, known as the Lengyel numbers, have since been studied by many over the past 30 years.
Interests with Lengyel numbers itself have evolved substantially, from the early interests in its asymptotic
growth to the recent investigations of its p-adic properties. Indeed, other similarly defined combinatorial
sequences have been defined, with the respective p-adic properties studied and recorded in various recent
literature. In this article, we aim to give a brief survey on the p-adic investigations of these recurrences
conducted over the years.

1 Introduction

In 1984, Lengyel posed in his paper [Len84] the following enumerative problem: given n P N, what is the number
of not necessarily maximal chain in the partition lattice of rns “ t1, ¨ ¨ ¨ , nu containing both the minimum and
maximal element? These numbers, denoted by Zn, are known as the Lengyel numbers. The enumerative and
combinatorial properties of these numbers are well-understood since its introduction. For example, the Lengyel
numbers form a sequence with a recursive structure which involves the Stirling numbers, and its corresponding
exponential generating function form a nice combinatorial relation. We will describe the combinatorics of
Lengyel numbers in Section 3.1.

The years following the introduction of Lengyel numbers saw a focus of research and investigations on
these numbers towards its asymptotic growth rates, initiated by Lengyel [Len84], and later Lengyel used the
Lengyel numbers as an example on some convergence results for recurrent sequences with Babai [BL92]. For
more in depth discussion of these results, c.f. [Len84] and [BL92].

In the early 1990s, the p-adic studies of Stirling numbers were initiated by Clarke [Cla95] and Lengyel [Len94].
Particular emphasis was placed on the 2-adic properties of Stirling numbers of the second kind, perhaps due to
the inherently applicability and concreteness of these numbers, which counts the number of ways to subdivide
a set into a specific number of subsets. However, the machinery available at the time forces Lengyel to present
his results with respect to some bound. These bounds is related to some results by Kwong [Kwo89] in 1989 on
the minimal periodicity of the Stirling numbers of the second kind modulo 2N , for N P N. At the end of his
paper, Lengyel, motivated by results from numerical experimentation, conjectured that indeed, these bounds
are not needed.

In 2005, De Wannemacker showed in [DW05] that such bounds are indeed redundant, and that he was
able to prove the main result of Lengyel with no bounds involved. In 2009, Lengyel improved on the results of
De Wannemacker, besides proving 2-adic properties of differences of Stirling Numbers of the second kind. We
will outline the progression of these results in Section 2.2.

In general however, the p-adic properties of Stirling numbers of the second kind are quite difficult to derive.
One may need to build some sophisticated machinery and employ in the studies of the p-adic property of
Stirling numbers of the second kind, much like what is done by Berrizbeitia, Medina, Moll, Moll, and Noble
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in [BMM`10]. However, one can still derive some partial results of the p-adic properties of Stirling number of
the second kind. We will discuss these in Section 2.3.

Whilst the Lengyel numbers are defined recursively with Stirling numbers of the second kind, only the
2-adic properties of Stirling number of the second kind seemed to yield some partial results on the 2-adic
properties of Lengyel numbers, most of them described in Lengyel’s [Len12]. Instead, Barsky and Bézivin
showed in [BB14] how one can convert Lengyel numbers to be defined recursively with Stirling numbers of the
first kind instead. With some result they have on the p-adic valuation of Stirling numbers of the first kind,
they were able to reprove Lengyel’s results and verify some conjecture of Lengyel. The results on the 2-adic
properties of Lengyel numbers are described in Section 3.2.

However, Lengyel proved some results on the divergence rate of the p-adic valuation of Stirling numbers of
the first kind in [Len15], and this makes generalisation into results on the p-adic properties of Lengyel numbers
difficult. Indeed, Lengyel [Len12] remarked that it may be difficult, simply because there are not apparent
structure on the p-adic valuation of Lengyel numbers.

Even so, Barsky and Bézivin described in [BB14] a generalisation of Lengyel numbers that does yield
some result on its p-adic property under similar analysis as in the 2-adic case. In particular, they introduced a
sequence of p-adic integers, which we refer to as the generalised Lengyel numbers in this paper, which yields as
the main result surveyed by this paper much the same p-adic properties as the 2-adic properties of Lengyel
numbers. We will describe the generalised Lengyel numbers and its p-adic properties in Section 4.

Finally, we will conclude this discussion by pointing out some interesting open problems to show that
there are still work to be done to further our understanding of the p-adic properties of Lengyel numbers and its
generalisation.

2 Stirling Numbers

In the theory of enumerative combinatorics, Stirling numbers are a celebrated class of combinatorial numbers
which are fundamental and influential in many different areas of enumerative combinatorics. Named after the
Scottish mathematician James Stirling in the 18-th century, there are indeed two different kinds of Stirling
numbers, known as the Stirling numbers of the first kind and Stirling numbers of the second kind. Here, we
will provide a brief overview of some combinatorial properties of both Stirling numbers. We refer the interested
reader to the excellent book on combinatorics, “Enumerative Combinatorics, Vol. 1” by Richard Stanley [Sta11]
for a thorough discussion on the combinatorics of Stirling numbers. We will then discuss the p-adic properites
of Stirling numbers of both the first and second kind.

2.1 Combinatorics of Stirling Numbers

Consider the set rns :“ t1, 2, ¨ ¨ ¨ , nu. One can define Stirling numbers of the second kind as follows:

Definition 2.1. The number of ways to partition rns into k non-empty subsets, denoted by Spn, kq, is defined
as the Stirling numbers of the second kind.

An alternate way to define the Stirling numbers of the second kind is that they are the set of numbers
such that

xn “
8
ÿ

k“0

Spn, kqpxqk

where we define pxqk “ k!
`

x
k

˘

“ xpx ´ 1q ¨ ¨ ¨ px ´ k ` 1q for k P Nzt0u and pxq0 “ 1. It is well known that
Stirling numbers of the second kind satisfy the following recurrence

Spn, kq “ kSpn´ 1, kq ` Spn´ 1, k ´ 1q

Another well-known identity of the Stirling numbers of the second kind can be deduced by using the inclusion-
exclusion principle

k!Spn, kq “
k
ÿ

i“0

p´1qk´i

ˆ

k

i

˙

in
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A perhaps less well-known identity on the Stirling numbers of the second kind is the following result by De
Wannemacker [DW05], which occurs in De Wannemacker’s studies of calculations in the Witt ring.

Lemma 2.1. Let n, k,m P N be such that 0 ď k ď n`m. Then

Spn`m, kq “
k
ÿ

i“0

k
ÿ

j“i

ˆ

j

i

˙

pk ´ iq!

pk ´ jq!
Spn, k ´ iqSpm, jq

Proof. Recall the Chu-Vandermonde identity

ˆ

s` t

q

˙

“

q
ÿ

r“0

ˆ

s

r

˙ˆ

t

q ´ r

˙

where q, r, s, t P N. Then, for n,m P N, we get that

xn`m “ xnxm “
n
ÿ

r“0

Spn, rqpxqr

˜

m
ÿ

j“0

Spm, jqj!

ˆ

x

j

˙

¸

“

n
ÿ

r“0

Spn, rqpxqr

˜

m
ÿ

j“0

Spm, jqj!
j
ÿ

i“0

ˆ

x´ r

i

˙ˆ

r

j ´ i

˙

¸

“

n
ÿ

r“0

Spn, rq
m
ÿ

j“0

Spm, jq
j
ÿ

i“0

j!

i!

ˆ

r

j ´ i

˙

pxqr`i

“

n
ÿ

r“0

m
ÿ

i“0

m
ÿ

j“i

j!

i!

ˆ

r

j ´ i

˙

Spn, rqSpm, jqpxqr`i

(rearranging the sums)

“

n
ÿ

r“0

m
ÿ

i“0

r`i
ÿ

j“i

j!

i!

ˆ

r

j ´ i

˙

Spn, rqSpm, jqpxqr`i

(since Spm, jq “ 0 for j ě m` 1)

“

n`m
ÿ

k“0

k
ÿ

i“0

k
ÿ

j“i

j!

i!

ˆ

k ´ i

j ´ i

˙

Spn, k ´ iqSpm, jqpxqk

(substituting k “ r ` i)

Thus, by comparing coefficients, we get that for 0 ď k ď n`m,

Spn`m, kq “
k
ÿ

i“0

k
ÿ

j“i

j!

i!

ˆ

k ´ i

j ´ i

˙

Spn, k ´ iqSpm, jq

Now, let Sn be the set of all permutations on rns. We can then define the Stirling numbers of the first kind:

Definition 2.2. The unsigned Stirling numbers of the first kind, cpn, kq, is defined to be

cpn, kq “ |tσ P Sn; σ has n cyclesu|

and the (signed) Stirling numbers of the first kind is spn, kq “ p´1qn´kcpn, kq.

Similar (or perhaps inverse) to Stirling numbers of the second kind, Stirling numbers of the first kind have the
following alternate definition:

pxqn “
n
ÿ

k“1

spn, kqxk

Stirling numbers of the first kind has identities similar to those for Stirling number of the second kind. For
example, the unsigned Stirling number of the first kind is known to have the following recurrence structure

cpn` 1, kq “ ncpn, kq ` cpn, k ´ 1q
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and so this immediately implies that

spn` 1, kq “ ´nspn, kq ` spn, k ´ 1q

As the name suggests, Stirling numbers of the first and second kind are closely related. In particular, they
satisfy for all n,m P N,

n
ÿ

k“0

Spn, kqspk,mq “ δn,m;
n
ÿ

k“0

spn, kqSpk,mq “ δn,m

where δn,m is the Kronecker delta, and further they satisfy the Stirling inversion formula: @n P N,

an “
n
ÿ

k“0

spn, kqbk ðñ bn “
n
ÿ

k“0

Spn, kqak

where tamumě0 and tbmumě0 are sequences of elements of a field K. This particular relation between both
Stirling numbers is what will allow us to derive the general result in the study of the p-adic properties of
recurrences involving these numbers.

2.2 2-adic Properties of Stirling Numbers of the Second Kind

Let us recall the following well-known lemma of Legendre [Leg30]: For any n P N, p a prime, we have that

ordppn!q “
n´ dppnq

p´ 1

where dppnq is the sum of the digits of n in its base p representation. In particular, this means that ord2pn!q “
n´ d2pnq. From this, it is also immediate to deduce that for all n, k P N and p a prime

ordp

ˆˆ

n

k

˙˙

“ ordppn!q ´ ordppk!q ´ ordpppn´ kq!q “
dppkq ` dppn´ kq ´ dppnq

p´ 1

In 1994, Lengyel in [Len94] studied the 2-adic properties of the Stirling numbers of the second kind. Building
on Nijenhuis’ and Wilf’s [NW87] and Kwong’s [Kwo89] works on the studies of the minimum periodicities of
Stirling numbers of the second kind, Lengyel was able to prove some 2-adic properties of Stirling numbers
of the second kind. In particular, let k P N, and let p be a prime. For N ě 1, let πpk, pN q and n0pk, p

N q be
the minimum period and the smallest number of non-repeating terms respectively of the sequence of Stirling
numbers tSpn, kq mod pNuněk. We define the following function

fpc, xq “ max

"

d2pkq ` rlog2pkqs` k,

R

log2pn0pk, 2
d2pkqqq

c

V*

then, we get the following result of Lengyel:

Theorem 2.1. For all positive integers c, k and n such that n ě fpc, kq,

ord2pSpc ¨ 2
n, kqq “ d2pkq ´ 1

Lengyel also proceeded to prove the 2-adic properties of Stirling numbers of the second kind of the form
Spc ¨ 2n ` u, kq, for various value of u including the case u “ ´1. These results are essentially derived from the
above theorem, and as such require a similar bound on n. C.f. [Len94] for a detailed derivation of these results.
At the end of his paper [Len94], Lengyel conjectured that indeed, at least in the case where u “ 0, these bounds
are redundant with respect to the study of the 2-adic order of Stirling numbers of the second kind.

In 2005, De Wannemacker finally proved in his paper [DW05] that these bounds are indeed redundant. In
particular, he showed the following theorem:
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Theorem 2.2. Let n, k P N be such that 1 ď k ď 2n. Then

ord2pSp2
n, kqq “ d2pkq ´ 1

For brevity, we will provide only a sketch of the proof. For the full proof, c.f. [DW05]. For the proof, we need
the following lemma of De Wannemacker.

Lemma 2.2. Let m,n P N. Then,
d2pm` nq ď d2pmq ` d2pnq

Further, let εlpkq be the coefficient of 2l in the binary expansion of k, for all l ě 0. Then

d2pm` nq “ d2pmq ` d2pnq ðñ
ÿ

lě0

εlpmqεlpnq “ 0

Proof. (Sketch proof of Theorem 2.2) We will proceed by induction on n. If n “ 0, then

ord2pSp1, 1qq “ ord2p1q “ 0 “ d2p1q ´ 1

Suppose the theorem is true for all i ď n´ 1, for some n P N. If k “ 1, then again,

ord2pSp2
n, 1qq “ ord2p1q “ 0 “ d2p1q ´ 1

so assume k ą 1. By Lemma 2.1, we get that

Sp2n, kq “
k
ÿ

i“0

k
ÿ

j“i

ˆ

j

i

˙

pk ´ iq!

pk ´ jq!
Sp2n´1, k ´ iqSp2n´1, jq

Now, for each summand, by induction hypothesis and Legendre identities and its corollary,

ord2

ˆˆ

j

i

˙

pk ´ iq!

pk ´ jq!
Sp2n´1, k ´ iqSp2n´1, jq

˙

“ ord2

ˆˆ

j

i

˙˙

` ord2ppk ´ iq!q ´ ord2ppk ´ jq!q ` ord2pSp2
n´1, k ´ iqq ` ord2pSp2

n´1, jqq

“ d2piq ` d2pj ´ iq ´ d2pjq ` pk ´ iq ´ d2pk ´ iq ´ pk ´ jq ` d2pk ´ jq ` d2pk ´ iq ´ 1` d2pjq ´ 1

“ d2piq ` d2pj ´ iq ` j ´ i` d2pk ´ jq ´ 2

By Lemma 2.2, since d2pmq ď d2pm´ nq ` d2pnq ùñ d2pm´ nq ě d2pmq ´ d2pnq for n ě m,

d2piq`d2pjq´d2piq` j´ i`d2pkq´ jq´ 2 ě d2piq`d2pjq´d2piq` j´ i`d2pkq´d2pjq´ 2 “ d2pkq` j´ i´ 2

and since j ě i, this shows that the 2-adic valuation of each summand is at least d2pkq ´ 2. If the 2-adic
valuation of a summand is greater than or equal to d2pkq, then these summands are divisible by 2d2pkq´1. For
summands which have 2-adic valuation d2pkq ´ 2 or d2pkq ´ 1, we can proceed by doing a case analysis on these
summands. The following table gives the coefficients of these summands

Coefficient of 2d2pkq´2 Coefficient of 2d2pkq´1 Final Coefficient of 2d2pkq´1

dpkq “ 1 0 odd odd
d2pkq ą 1 & k odd 2ˆ odd even odd
d2pkq ą 1 & k even 2ˆ odd even odd

where the last column is the coefficient of 2d2pkq´1 by grouping all the terms above. Thus

Sp2n, kq “ C ¨ 2d2pkq´1 `
ÿ

jěd2pkq

Cj ¨ 2
j

where C is odd, and Cj for j ě d2pkq are some non-negative integers. Thus, we get that ord2pSp2
n, 1qq “ d2pkq´1,

and the result follows by induction.
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De Wannemacker also proved in [DW05] a lower bound for all other cases.

Theorem 2.3. Let n, k P N be such that 0 ď k ď n. Then,

ord2pSpn, kqq ě d2pkq ´ d2pnq

Subsequently, in 2009, Lengyel generalised in his paper [Len09] the results of De Wannemacker.

Theorem 2.4. Let n, k, c P N, and let 1 ď k ď 2n. Then,

ord2pSpc ¨ 2
n, kqq “ d2pkq ´ 1

In essence, the above theorem could be proved by performing induction on d2pcq, and applying the techniques
employed by De Wannemacker. Indeed, among other results regarding the 2-adic and p-adic properties of
differences of Stirling numbers of the second kind, Lengyel proved the following bound.

Theorem 2.5. Let n, k, u, c P N with 1 ď k ď 2n and u ď 2ord2pkq. Then

ord2pSpc ¨ 2
n ` u, kqq ě ord2pkq ´ tlog2puqu` d2pkq ´ 2

and furthermore, if u “ 2m, for some m P N with 0 ď m ď ord2pkq ´ 1, then

ord2pSpc ¨ 2
n ` 2m, kqq “ ord2pkq ´m` d2pkq ´ 2

2.3 p-adic Properties of Stirling Numbers of the Second Kind

In general, for p ą 2, it is generally much harder to consolidate the p-adic properties of Stirling numbers of
the second kind. One will need to employ what is known as modular and p-adic trees to derive some general
results on the p-adic properties of Stirling numbers of the second kind. We refer the reader to a paper by
Berrizbeitia et. al. [BMM`10] for more results on the p-adic valuation of Stirling numbers of the second kind
using this machinery. We do, however, have the following result by Gessel and Lengyel [GL01] regarding the
p-adic properties of Stirling numbers of the second kind, without using the machinery employed by Berrizbeitia
et. al. in their study of the p-adic valuation of Stirling numbers of the second kind.

Theorem 2.6. If n “ app´ 1qpq, where 1 ď k ď n, with a and q co-prime positive integers, q sufficiently large,
and k

p not an odd integer, then

ordppSpn, kqq “

Z

k ´ 1

p´ 1

^

` τppkq ´
k ´ dppkq

p´ 1

where τppkq is a nonnegative integer. Furthermore, if p´ 1 � k, then τkppq “ 0.

2.4 p-adic Properties of Stirling Numbers of the First Kind

Curiously, although there are many results regarding the p-adic properties of Stirling numbers of the second
kind, the same could not be said for the p-adic properties of Stirling numbers of the first kind until very recently.
This is especially curious, since some of our general result we will describe later in this paper on the p-adic
properties of recurrences involving Stirling numbers rely heavily on the p-adic properties of Stirling numbers of
the first kind, even when they are defined with Stirling numbers of the second kind.

It wasn’t until very recently that Lengyel showed why such is the case, when he proved in [Len15] some
divergence results of the p-adic valuation of Stirling numbers of the first kind. Nonetheless, the following lemma
due to Barsky and Bézivin in [BB14] will still prove useful to us.

Lemma 2.3. For 1 ď k ď n, we get that

ordppspn, kqq ě

Z

n´ 1

p

^

` 1´ k
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Proof. Recall that pxqn “
řn

k“1 spn, kqx
k. Let Pnpxq “ pxqn P Cprxs. From [Ami75],

|Pn|ppxq “ sup
xPCp

|x|pďr

|Pnpxq|p

Consider α P Cp with |α|p “ r, with 1
p ă r ă 1. Then, since | ¨ |p is non-Archimedian,

|α´ a|p “

#

1 p ffl a

r otherwise

Since the number of elements of 1 ď a ď n´ 1 which are divisible by p is
Y

n´1
p

]

, this implies that

|pαqn|p “ |αpα´ 1q ¨ ¨ ¨ pα´ pn´ 1qq|p “ |α|p|α´ 1|p ¨ ¨ ¨ |α´ pn´ 1q|p “ r ¨ rtn´1
p u “ rtn´1

p u`1

But note also that
rtn´1

p u`1
“ |pαqn|p “ max

1ďkďn
t|spn, kq|pr

ku

Thus, we get that |spn, kq|pr
k ď rtn´1

p u`1
ùñ |spn, kq|p ď rtn´1

p u`1´k. Further, for x P Cp such that |x|p ă r,

#

|x´ a|p “ 1 p ffl a

|x´ a|p ď maxt|x|p, |a|pu ă r otherwise

ùñ |Pnpxq|p “ |xpx´ 1q ¨ ¨ ¨ px´ pn´ 1qq|p “ |x|p|x´ 1|p ¨ ¨ ¨ |x´ pn´ 1q|p ă r ¨ rtn´1
p u “ rtn´1

p u`1

Thus, |Pn|ppxq “ rtn´1
p u`1. Finally, since the map

r ÞÑ |Pn|pprq

is a continuous map [Ami75], this allows us to let r “ 1
p , i.e. we get that

|spn, kq|p ď
1

ptn´1
p u`1´k

ùñ ordppspn, kqq ě

Z

n´ 1

p

^

` 1´ k

Finally, we note that [Len15] saw some new results on the p-adic relation for the generalised harmonic numbers,
besides results on the divergence rate of the p-adic valuation of Stirling numbers of the first kind.

3 Lengyel Numbers

In 1984, Lengyel first introduced a recurrence involving Stirling numbers in his paper [Len84]. These numbers,
known as the Lengyel numbers, have since been studied by many over the past 30 years. Interests with Lengyel
numbers itself have evolved substantially, from the early interests in its asymptotic growth to the recent
investigations of its p-adic properties. Here, we will first give the combinatorial properties of Lengyel numbers.
We will then describe the 2-adic properties of Lengyel numbers, and discuss the difficulty of deriving p-adic
properties of Lengyel numbers for p ą 3. We will also introduce a Lengyel-like sequence of numbers, which
instead of Stirling number of the second kind, has a recurrence structure that is defined by Stirling number of
the first kind.

3.1 Combinatorics of Lengyel Numbers

Consider the set rns “ t1, 2, ¨ ¨ ¨ , nu. Let Pn be the set of all possible partitions of rns into k non-empty subsets,
for k P N.
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Definition 3.1. Let x, y P Pn. We say x is a refinement of y, denoted by x ĺ y, if every element of x is a
subset of an element in y.

ĺ can easily be checked to be a partial order. We can then define a partition lattice, by imposing the partial
order ĺ on Pn. Specifically,

Definition 3.2. Let n ě 1, and let Pn be the set of all possible partitions of rns into k non-empty subsets, for
k P N. The partition lattice of rns is then Ln “ pPn,ĺq, where ĺ is the refinement partial order on Pn.

It is now easy to see that the minimal and maximal element of Ln is tt1u, t2u, ¨ ¨ ¨ , tnuu and trnsu
respectively. Now, since Ln is a poset, we can consider the chains of Ln containing both the minimal and
maximal element. If we request the chain to be maximal, by basic counting the number of maximal chains in

Ln is n!pn´1q!
2n´1 .

Instead, let us consider the number of not necessarily maximal chains in Ln containing both the minimal
and maximal element, which we denote by Zn. We can represent any such chain by the tree representation,
where the nodes at the n-th level from the bottom of the tree represents the element of the n-th partition in
the chain, and any two nodes x and y are adjacent if either x Ď y or y Ď x. For example, if n “ 4, then one
possible chain is the chain

tt1u, t2u, t3u, t4uu ĺ tt1u, t2u, t3, 4uu ĺ tt1u, t2, 3, 4uu ĺ t1, 2, 3, 4u

then, it’s tree representation is

t1, 2, 3, 4u

t1u

t1u

t1u

t2, 3, 4u

t2u

t2u

t3, 4u

t3u t4u

Now, it is clear that Z1 “ 1. Indeed, we have the following recurrence structure.

Lemma 3.1. Let n ě 2, and let Zn be the number of not necessarily maximal chain in Ln containing both the
minimal and maximal element of Ln. Then,

Zn “

n´1
ÿ

k“1

Spn, kqZk

To see why this true, view each chain in its tree representation. Note that we can decompose the tree
representation into the bottom level and subtree T̃ “ T ztt1u, ¨ ¨ ¨ , tnuu, i.e. T̃ is the tree obtained by deleting
the bottom level nodes. Now, by viewing each node as the atomic element, T̃ is a tree representation of a chain
in Lk, where k is the number of bottom level nodes of T̃ . Thus, there are Zk such tree representations, and in
each there are Spn, kq ways to partition rns into k non-empty subsets for each of the k nodes of T̃ . We can do
this for each 1 ď k ď n, and so we get the above total.

From this recurrence, one can easily deduce that for all n ě 2,

2Zn “

n
ÿ

k“1

Spn, kqZk
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Now, if we define the following exponential generating function,

Zpxq “
ÿ

ně1

Zn
xn

n!

then, the above recurrence yields the functional equation

2Zpxq ´ x “ Zpex ´ 1q

Indeed, if one is familiar with the theory of combinatorial species, one can impose the species Z, which
endows given any rns, a tree structure on rns which is the tree representation of not necessarily maximal
partition-chain containing both the minimal and maximal element of Ln. Then, Zpxq defined above is the
exponential generating function for Z. Further, if E , E0 and E1 is the species of sets, the empty set and the
singleton respectively, then we get the following natural equivalence

Z ‘ Z » ZrEzE0s ‘ E1

and the theory of combinatorial species will immediately allow us to deduce the above functional equation. The
functional equation has been used to derive results about the asymptotic growth rates of the Lengyel numbers,
but has yet to be used to deduce the p-adic properties of these numbers.

3.2 2-adic Properties of Lengyel Numbers

Lengyel, perhaps appropriately, is the first to describe some 2-adic properties of the Lengyel numbers, in his
paper [Len12]. The main result of [Len12] describes a very beautiful lower bound for the 2-adic valuation of
the Lengyel numbers.

Theorem 3.1. For n ě 2 and L ě 0, we have that

ord2pZ2n`Lq ě n

Note that this theorem immediately implies that for any k ě 4,

ord2pZkq ě tlog2pkqu

and since ord2pZ1q “ 0, ord2pZ2q “ 0 and ord2pZ3q “ 2, we get that for all k ě 1,

ord2pZkq ě rlog2pkqs´ 1 ě log2pkq ´ 1

In [Len12], Lengyel used a variety of results regarding the 2-adic valuation of different sequences of Stirling
number of the second kind and its difference he derived earlier in [Len09] as well as in [Len12] to prove Theorem
3.1. At the end of [Len12], Lengyel proposed a couple of conjectures regarding the exact 2-adic valuation of
some Lengyel numbers, and suggests some other conjectures regarding the 2-adic valuation of Stirling number
of the second kind in some form to prove. Lengyel was, under the assumption of these conjectures regarding
the 2-adic valuation of Stirling number of the second kind, able to provide a conditional prove of his conjectures
on the exact 2-adic valuation for k “ 2n for n ě 3, and the maximum k such that ord2pZkq “ n. See [Len12]
for more details.

In 2014, Barsky and Bézivin, in their paper [BB14], considered the Lengyel numbers in terms of Stirling
numbers of the first kind. Indeed, since for n ě 2,

2Zn “

n
ÿ

k“1

Spn, kqZk “

n
ÿ

k“1

Spn, kqZk ` δn,1 “
n
ÿ

k“1

Spn, kqZk `

n
ÿ

k“1

Spn, kqspk, 1q “
n
ÿ

k“1

Spn, kqpZk ` spn, 1qq

ùñ Zn “

n
ÿ

k“1

Spn, kq
Zk ` spn, 1q

2

by applying the Stirling inversion formula, we get that
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Proposition 3.2. For all n ě 2, we get that

Zn “ spn, 1q ´ 2
n´1
ÿ

k“1

spn, kqZk

With this insight, Barsky and Bézivin was able to reprove (the slight relaxation of) Theorem 3.1, i.e.

ord2pZkq ě log2pkq ´ 1

We will prove a generalisation of this in the next section. Further, they were able to resolve the conjectures of
Lengyel in [Len12] without proving Lengyel’s conjectures regarding the 2-adic valuation of Stirling number of
the second kind. Specifically,

Theorem 3.3. If t ě 3, then

ord2pZ2tq “ t

Theorem 3.4. For all t ě 2,

max tk; ord2pZkq “ tu “ 3 ¨ 2t´1

For a full proof, c.f. [BB14].

3.3 p-adic Properties of Lengyel Numbers

For p ‰ 2, Lengyel noted in [Len12] that through his numerical experimentation, that the p-adic valuation of
Lengyel numbers, ordppZkq does not seem to have any structure, and indeed that it behaves quite chaotically.
Lengyel suggested that perhaps the functional equation 2Zpxq ` x “ Zpex ´ 1q may help in deriving the p-adic
properties of Lengyel numbers.

Perhaps, one should instead try to generalise the Lengyel numbers in some way to get results that are
similar as in the case of the 2-adic properties of Lengyel numbers. Indeed, we will introduce in the next section,
a generalisation of the Lengyel numbers due to Barsky and Bézivin that yields a similar p-adic properties for
any p ‰ 2 as the 2-adic properties of Lengyel numbers.

3.4 Lengyel-like Numbers With Stirling Numbers of the First Kind

Barsky and Bézivin considered in [BB14] a new sequence Yn by swapping out Stirling numbers of the second
kind with Stirling numbers of the first kind. Specifically, the sequence Yn is such that Y1 “ 1 and for n ě 2,

Yn “
n´1
ÿ

k“1

spn, kqYk

We can then apply the same argument as in for Proposition 3.2 to see that

Yn “ ´Spn, 1q ` 2
n
ÿ

k“1

Spn, kqYk

Barsky and Bźivin proved the following 2-adic properties of Yn.

Theorem 3.5. For all n ě 1, Yn is odd. Further,

ord2pYn ` 1q “ 1 ðñ n ” 0 or 1 mod 3

For a proof, see [BB14].
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4 p-adic Properties of A Generalisation of Lengyel Numbers

In [BB14], Barsky and Bézivin introduced a generalisation of Lengyel numbers, which will be referred as the
generalised Lengyel numbers in this paper, although this terminology was not used in [BB14].

Definition 4.1. Let p be a prime. A generalised Lengyel number is a sequence of numbers Z
xpy
n defined

as follows: Define Z
xpy
0 “ 0, Z

xpy
1 “ 1. For n ě 2, define

pp´ 1qZxpyn “

n´1
ÿ

k“1

Spn, kqZ
xpy
k

From this, it is clear that although Z
xpy
n is not an integer, it is a p-adic integer. Furthermore, with the same

reasoning as in Proposition 3.2, we get that for n ě 2,

Zxpyn “ spn, 1q ´
p

p´ 1

n´1
ÿ

k“1

spn, kqZ
xpy
k

This is indeed a generalisation of Lengyel numbers, as if p “ 2, we get that Z
x2y
1 “ 1 “ Z1, and so inductively,

Zx2yn “

n´1
ÿ

k“1

Spn, kqZ
x2y
k “

n´1
ÿ

k“1

Spn, kqZk “ Zn

Before we proceed to describe the main result, let us first observe the following lemma due to Barsky and
Bézivin [BB14].

Lemma 4.1. Let t ě 2. Then
pxqpt ” xp

t´1

pxp´1 ´ 1qp
t´1

mod p

Remark 4.1: Now, since

pt
ÿ

k“1

spn, kqxk “ pxqpt ” xp
t´1

pxp´1 ´ 1qp
t´1

” xp
t´1

pxp
t
´pt´1

´ 1q ” xp
t

´ xp
t´1

mod p

This implies by comparing coefficients that p � spn, kq for k ‰ pt´1, pt and that p ffl spn, pt´1q.

With this generalisation and our results from previous section, we can now prove the main theorem due to
Barksky and Bézivin in [BB14].

Theorem 4.2. For all n ě 1,
ordppZ

xpy
n q ě logppnq ´ 1

and further, if p ě 3, then for t ě 1

ordppZ
xpy
pt q “ t´ 1

Proof. Since

Zxpyn “ spn, 1q ´
p

p´ 1

n´1
ÿ

k“1

spn, kqZ
xpy
k

ùñ ordppZ
xpy
n q ě min

"

ordppspn, 1qq, ordp

ˆ

p

p´ 1
spn, 1qZ

xpy
1

˙

, ¨ ¨ ¨ , ordp

ˆ

p

p´ 1
spn, n´ 1qZ

xpy
n´1

˙*

Thus, we need only show that p-adic valuation of each summand is at least logppnq ´ 1. We will proceed by
induction on n. For 1 ď n ď p, logppnq ´ 1 ď 0, so the result holds trivially. Now, suppose the result holds for
all m ď n´ 1, for some n P N and n ě p` 1.
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Now, recall that spn, 1q “ p´1qn´1pn´ 1q!, and by Legendre’s lemma, ordppspn, 1qq “
n´1´dppn´1q

p´1 . Write
n´ 1 in its base-p expansion,

n´ 1 “
m
ÿ

j“0

ajp
j

for some m ě 0, with aj P t0, ¨ ¨ ¨ , p´ 1u for 0 ď j ď m and am ‰ 0. Thus implies that

n “ 1`
m
ÿ

j“0

ajp
j ď 1`

m
ÿ

j“0

pp´ 1qpj “ 1` pp´ 1q
m
ÿ

j“0

pj “ 1` pm`1 ´ 1 “ pm`1

ùñ logppnq ´ 1 ď m

Finally,

ordppspn, 1qq “
n´ 1´ dppn´ 1q

p´ 1
“

řm
j“0 ajp

j ´
řm

j“0 aj

p´ 1
“

řm
j“1 ajpp

j ´ 1q

p´ 1

“

m
ÿ

j“1

aj

j´1
ÿ

i“0

pi ě amp1` ¨ ¨ ¨ ` p
m´1q ě m ě logppnq ´ 1

For each summand p
p´1spn, kqZ

xpy
k ,

ordp

ˆ

p

p´ 1
spn, kqZ

xpy
k

˙

“ ordp

´

pspn, kqZ
xpy
k

¯

“ 1` ordppspn, kqq ` ordppZ
xpy
k q

By Lemma 2.3 and by induction hypothesis, we get that

ordp

ˆ

p

p´ 1
spn, kqZ

xpy
k

˙

“ 1`ordppspn, kqq`ordppZ
xpy
k q ě 1`

Z

n´ 1

p

^

`1´k`logppkq´1 “ 1`

Z

n´ 1

p

^

´k`logppkq

Now, for 1 ď k ď
Y

n´1
p

]

` 1, there are two cases:

Case 1: p � n. Then, n “ mp ùñ logppnq “ logppmq`1, for some m P N, and that
Y

n´1
p

]

“ m´1. So, 1 ď k ď m.

Now, recall that fpxq “ x´ logppxq is an increasing function, so we get that k ´ logppkq ď m´ logppmq,
and thus

ordp

ˆ

p

p´ 1
spn, kqZ

xpy
k

˙

ě 1` pm´ 1q ´ k ` logppkq ě m´m` logppmq “ logppnq ´ 1

Case 2: p ffl n. Then, n “ mp ` r ùñ logppnq ě logppmq ` 1, for some m P N, and that
Y

n´1
p

]

“ m

and 1 ď k ď m ` 1. Now, recall that fpxq “ x ´ logppxq is an increasing function, so we get that
k ´ logppkq ď m` 1´ logppm` 1q, and thus

ordp

ˆ

p

p´ 1
spn, kqZ

xpy
k

˙

ě 1`m´ k ` logppkq ě 1`m´m´ 1` logppmq “ logppnq ´ 1

Finally, let
Y

n´1
p

]

` 2 ď k ď n ´ 1. Now,
Y

n´1
p

]

ă k ùñ pk ą n ´ 1, or that pk ě n. Thus

logppkq ě logppnq ´ 1, and so

ordp

ˆ

p

p´ 1
spn, kqZ

xpy
k

˙

ě 1` ordppZ
xpy
k q ě logppkq ě logppnq ´ 1
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Thus, we get that

ordppZ
xpy
n q ě min

"

ordppspn, 1qq, ordp

ˆ

p

p´ 1
spn, 1qZ

xpy
1

˙

, ¨ ¨ ¨ , ordp

ˆ

p

p´ 1
spn, n´ 1qZ

xpy
n´1

˙*

ě logppnq ´ 1

and we get our result by induction.
For the second part of the theorem, let p ě 3, and suppose n “ pt. We proceed by induction on t. For

t “ 1, since

Zxpyp “ spp, 1q ´
p

p´ 1

p´1
ÿ

k“1

spn, kqZ
xpy
k

and spp, 1q “ p´1qp´1pp´ 1q!, so Z
xpy
p is a p-adic unit, which implies that ordppZ

xpy
p q “ 0.

Now, suppose the result is true for k ď t´ 1, for some 2 ď t P N. Again, since sppt, 1q “ p´1qp
t
´1ppt ´ 1q!,

ordppspp
t, 1qq “

pt ´ 1´ dppp
t ´ 1q

p´ 1
“
pt ´ 1´ tpp´ 1q

p´ 1
“ 1` ¨ ¨ ¨ ` pt´1 ´ t “ pp´ 1q ` ¨ ¨ ¨ ` ppt´1 ´ 1q

where each summand is at least 1, and further since p ě 3, p´ 1 ě 2, and so

ordppspp
t, 1qq “ pp´ 1q ` ¨ ¨ ¨ ` ppt´1 ´ 1q ě t

Now, suppose 1 ď k ď pt´1 ´ 2. Since p ě 3 and t ě 2, pt´1 ´ 2 ě pt´2 ùñ logppp
t´1 ´ 2q ě t´ 2. Thus,

since fpxq “ x´ logppxq is increasing,

k ´ logppkq ď pp
t´1 ´ 2q ´ logppp

t´1 ´ 2q ď ppt´1 ´ 2q ´ pt´ 2q “ pt´1 ´ t

and since 1`
Y

pt
´1
p

]

“ 1` pt´1 ´ 1 “ pt´1,

ùñ ordp

ˆ

p

p´ 1
spn, kqZ

xpy
k

˙

ě 1`

Z

pt ´ 1

p

^

´ k ` logppkq “ pt´1 ´ k ` logppkq ě t

For k “ pt´1 ´ 1, since by remark 4.1, we have that p � sppt, pt´1 ´ 1q ùñ ordppspp
t, pt´1 ´ 1q ě 1, so by

first part of the theorem,

pt´1 ´ 1 ą pt´2 ùñ ordppspp
t, pt´1 ´ 1qq ą t´ 3 ùñ ordppspp

t, pt´1 ´ 1qq ě t´ 2

ùñ ordp

ˆ

p

p´ 1
spn, pt´1 ´ 1qZ

xpy
pt´1´1

˙

“ 1` ordppspp
t, pt´1 ´ 1qq ` ordppZ

xpy
pt´1´1

q ě 2` t´ 2 “ t

If pt´1 ` 1 ď k ď pt ´ 1, then by first part of the theorem, ordppZ
xpy
k q ě t´ 1, so

ordp

ˆ

p

p´ 1
spn, kqZ

xpy
k

˙

ě 1` ordppZ
xpy
k q ě t

Finally, for k “ pt´1, by remark 4.1, we have that p ffl sppt, pt´1 ´ 1q, so by induction hypothesis, since

ordppZ
xpy
pt´1q “ t´ 2,

ordp

ˆ

p

p´ 1
spn, pt´1qZ

xpy
pt´1

˙

“ 1` ordppspp
t, pt´1qq ` ordppZ

xpy
pt´1q “ t´ 1

Thus, since every other summand has p-adic valuation greater than t´ 1, we must have that

ordppZ
xpy
pt q “ t´ 1

and so the result follows by induction as required.
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5 Conclusion

In the past 30 years since the introduction of Lengyel numbers by Lengyel in 1984, the interest in Lengyel
numbers has changed drastically from its asymptotic growth rate to its p-adic properties. Along the way to
finally showing the main theorem of Barsky and Bézivin, a lot of results, particularly the p-adic properties of
Stirling numbers, has been discovered that are beautiful in their own right. However, these results really do
come together and give a really elegant lower bound to the p-adic valuation of generalised Lengyel numbers.
This particular problem really appeals to the root of p-adic analysis, which is the question of the divisibility by
primes of numbers. Further, this problem hints perhaps at a fascinating link between combinatorics and p-adic
analysis, suggesting that maybe other classical combinatorial objects yields similar results when subjected to a
similar analysis.

Of course, this problem is far from being entirely solved, as there are still some open questions such as
the possible p-adic properties of Lengyel numbers for p ‰ 2 and other refinement on the bounds of the p-adic
valuation of generalised Lengyel numbers. It is also interesting, as Lengyel has pointed out, to see if the theory
of species may help yield more result on the p-adic properties of these sequence. Finally, it remains to see if
the generalised Lengyel numbers has some concrete interpretation in combinatorics or even in other areas of

mathematics, and if ordqpZ
xpy
n q yields any structure, for p ‰ q.
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