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Random Walks
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Graph with probable transitions
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Graph with probable transitions

Questions
• Pr{blue reaches orange before green}
• Pr{blue ever reaches orange}
• E[#steps blue to orange]
• Average fraction of time at blue
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Random Walks

Applications
• Finance – Stocks, options
• Algorithms – web search, clustering
• Physics – Brownian Motion
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Gambler’s Ruin

1-Dimensional Walk

p

q
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Gambler’s Ruin

# of bets

$$$

n

T
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The Gambler’s Ruin

Parameters:
n ::= initial capital (stake)
T ::= gambler’s Target
p ::= Pr{win $1 bet} 
q ::=1– p
m ::= intended profit = T – n
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Three general cases:
• Biased against p < 1/2
• Biased in favor p > 1/2
• Unbiased (Fair) p = 1/2

The Gambler’s Ruin
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Unbiased Case: p = q = 1/2

Let w ::= Pr{reach Target}
E[$$] = w·(T – n) + (1 – w)·(–n)

= wT – n
But game is fair, so E[$$ won] = 0

w = n
T
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Unbiased Case

Consequences
n=500, T=600

Pr{win $100} = 500/600 ≈ 0.83

n=1,000,000, T=1,000,100
Pr{win $100} ≈ 0.9999
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Wait!  Why is
E[$$ won] = 0?

Define Random Variables, Gi

th

th

0 if game ends in   bets
:: 1 if gambler wins  bet

1 if gambler loses  bet
i

i
G i
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Unbiased Case -- More analysis
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E[$$ won] = E[∑Gi]
= ∑ E[Gi]
= ∑ 0
= 0

∑
∞

=

=
1

 won$$
i

iG

Infinite Additivity of Expectation
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WAIT!                       ALARM!

This is just like
the bet-doubling (St. Petersburg) paradox

(a fair game with guaranteed $10 win)

Infinite Additivity?
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We must verify that

converges.
1

E i
i

G
∞

=

⎡ ⎤⎣ ⎦∑

Infinite Additivity?
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if ≥ i bets are made,
game ends before i bets.⎩

⎨
⎧

=
0
1

iG

E[|Gi|] = Pr{ ≥ i bets}

Infinite Additivity?
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In-class Problem 1:
Pr{game takes ≥ i bets} ≤ cri

for some c > 0, r < 1, so

Convergence Condition is Met
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Pr{game takes ≥ i bets} ≤ cri

so    
Pr{game takes forever}= 0.

Already was assumed in:
Pr{loss} = 1 – w = 1 – Pr{win}

The End is Certain
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Biased Against: p < 1/2 < q

Betting red in US roulette

p = 18/38 = 9/19 < 1/2
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Astonishing Fact!
Pr{win $100 starting with $500}

< 1/37,000 !
(was 5/6 in the unbiased case.)

Biased Against: p < 1/2 < q
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More amazing still!
Pr{win $100 starting with $1M}

< 1/37,000
Pr{win $100 starting w/ any $n stake}

< 1/37,000

Biased Against: p < 1/2 < q
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wn ::= Pr{win with stake n}

wn = pwn+1 + qwn-1
w0 = 0 (Gambler starts broke)
wT = 1 (Gambler starts a winner)
wn+1 = (1/p)wn – (q/p)wn-1

Winning in the Biased Case
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wn+1 − (1/p)wn + (q/p)wn-1 = 0

A linear recurrence: Guess that

wn = cn for some c, so

cn+1 – (1/p)cn – (q/p)cn-1 = 0

Winning in the Biased Case
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c2 – (1/p)c – (q/p) = 0

roots = 1,  q/p so

wn = (q/p)n and wn = 1n satisfy

wn+1 − (1/p)wn + (q/p)wn-1 = 0

Winning in the Biased Case
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so       a (q/p)n + b1n

satisfies the recurrence. Use

boundary conditions at n = 0,T

to solve for a and b, and get:

Winning in the Biased Case
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Winning in the Biased Case
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Winning in the Unfair Case

Punchline:  for p < q:

where m ::= T−n = intended profit
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for p < q:

is exponentially decreasing in m,

the intended profit.

Winning in the Unfair Case

m
p
q

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Losing in Roulette

p = 18/38, q = 20/38
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Losing in Roulette
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How Many Bets?

What is the expected number of
bets for the game to end?
– either by winning $(T-n) or 

by going broke  (losing $n).
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How Many Bets?  Biased Case

E[$ per bet] = p − q = 2p−1
so by Wald’s Thm
E[$ won] = (2p-1) E[# bets]

E[# bets] =
E[$ won]
(2 -1) p
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But
E[$ won] = wn(T−n) − (1−wn)n

so
E[# bets] = 

for p ≠ 1/2.

How Many Bets?  Biased Case
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How Many Bets?  Fair Case

E[# bets] = n(T−n) =
(initial stake)⋅(intended profit)

proof by
• limp→1/2 E[# unfair bets], or
• solving linear recurrence:
en =  p(1 + en+1) +  q(1 + en-1)
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Unbiased Case for T = ∞

{ } npr win
T

=

{ } 1 1npr lose
T

⎛ ⎞= − →⎜ ⎟
⎝ ⎠

as T→∞
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Unbiased Case for T = ∞

2 1{ w / } { w / }Pr lose T Pr lose T≥

If you lose a play aiming for goal T1,
then you would lose for T2  > T1, so

{ w / } { w / }Pr lose T Pr lose T= ∞ ≥ < ∞

1→So if the gambler keeps betting until
broke, he is sure to go broke.
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Return to the origin.

If you start at the origin and 
move left or right with equal 
probability, and keep moving in 
this way, 

Pr{return to origin} = 1
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Unbiased Case for T = ∞

Likewise,
E[#bets w/T = ∞] ≥ E[#bets w/T < ∞]

= n(T-n) →∞
(as T →∞)

So the expected #bets for the gambler to 
go broke is infinite!


