

Biased Against:
$$p < 1/2 < q$$

Betting red in US roulette
 $p = 18/38 = 9/19 < 1/2$

L14-2.19

Biased Against: p < 1/2 < q

More amazing still! Pr{win \$100 starting with \$1M} < 1/37,000 Pr{win \$100 starting w/ any \$*n* stake} < 1/37,000

L14-2.20

Winning in the Biased Case

$$w_{n+1} - (1/p)w_n + (q/p)w_{n-1} = 0$$

A linear recurrence: Guess that
 $w_n = c^n$ for some c , so
 $c^{n+1} - (1/p)c^n - (q/p)c^{n-1} = 0$

Winning in the Biased Case

$$c^2 - (1/p)c - (q/p) = 0$$

roots = 1, q/p so
 $w_n = (q/p)^n$ and $w_n = 1^n$ satisfy
 $w_{n+1} - (1/p)w_n + (q/p)w_{n-1} = 0$

Winning in the Biased Case
so
$$a (q/p)^n + b1^n$$

satisfies the recurrence. Use
boundary conditions at $n = 0,T$
to solve for *a* and *b*, and get:

L14-2.24

Winning in the Biased Case
$$w_n = \frac{(q/p)^n - 1}{(q/p)^T - 1}$$
 for $p \neq q$

Winning in the Unfair Case
Punchline: for
$$p < q$$
:
 $w_n \le \frac{(q/p)^n}{(q/p)^T}$
 $= \left(\frac{p}{q}\right)^m$
where $m ::= T - n$ = intended profit

How Many Bets? Biased Case

$$E[\$ \text{ per bet}] = p - q = 2p - 1$$
so by Wald's Thm

$$E[\$ \text{ won}] = (2p - 1) E[\# \text{ bets}]$$

$$E[\# \text{ bets}] = \frac{E[\$ \text{ won}]}{(2p - 1)}$$
(1423)

How Many Bets? Biased Case
But

$$E[\$ \text{ won}] = w_n(T-n) - (1-w_n)n$$

So
 $E[\# \text{ bets}] = \frac{w_nT - n}{2p - 1}$
for $p \neq 1/2$.

Unbiased Case for
$$T = \infty$$

 $pr\{win\} = \frac{n}{T}$
 $pr\{lose\} = \left(1 - \frac{n}{T}\right) \rightarrow 1$
as $T \rightarrow \infty$
(1424)

Unbiased Case for
$$T = \infty$$

If you lose a play aiming for goal T_1 ,
then you would lose for $T_2 > T_1$, so
 $Pr\{lose \le T_2\} \ge Pr\{lose \le T_1\}$
 $Pr\{lose \le T_2\} \ge Pr\{lose \le T_1\}$
So if the gambler keeps betting until
broke, he is sure to go broke.

Return to the origin.

If you start at the origin and move left or right with equal probability, and keep moving in this way,

 $Pr{return to origin} = 1$

L14-2.36

Unbiased Case for
$$T = \infty$$

Likewise,
 $E[\#bets w/T = \infty] \ge E[\#bets w/T < \infty]$
 $= n(T-n) \rightarrow \infty$
(as $T \rightarrow \infty$)
So the expected #bets for the gambler to
go broke is infinite!