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Sampling; Random Walk

1 What the Mean Means

1.1 Bernoulli’s “Stupidest Man”

We have focused on the expectation of a random variable because it indicates the “average value”
the random variable will take. But what precisely does this mean?

We know a random variable may never actually equal its expectation. We also know, for example,
that if we flip a fair coin 100 times, the chance that we actually flip exactly 50 heads is only about
8%. In fact, it gets less and less likely as we continue flipping that the number of heads will exactly
equal the expected number, e.g., the chance of exactly 500 heads in 1000 flips is less than 3%, in
1,000,000 flips less than 0.1%, . . . .

But what is true is that the fraction of heads flipped is likely to be close to half of the flips, and the
more flips, the closer the fraction is likely to be to 1/2. For example, the chance that the fraction of
heads is within 5% of 1/2 is

• more than 24% in 10 flips,

• more than 38% in 100 flips,

• more than 56% in 200 flips, and

• more than 89% in 1000 flips.

These numbers illustrate the single most important phenomenon of probability: the average value
from repeated experiments is likely to be close to the expected value of one experiment. And it gets
more likely to be closer as the number of experiments increases. This result was first formulated
and proved by Jacob D. Bernoulli in his book Ars Conjectandi (The Art of Guessing) published
posthumously in 1713. In his Introduction, Bernoulli comments that1

even the stupidest man—by some instinct of nature per se and by no previous instruc-
tion (this is truly amazing)—knows for sure that the more observations . . . that are
taken, the less the danger will be of straying from the mark.

But he goes on to argue that this instinct should not be taken for granted:
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1These quotes are taken from Grinstead & Snell, Introduction to Probability, American Mathematical Society, p. 310.
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Something further must be contemplated here which perhaps no one has thought
about until now. It certainly remains to be inquired whether after the number of ob-
servations has been increased, the probability. . . of obtaining the true ratio. . . finally ex-
ceeds any given degree of certainty; or whether the problem has, so to speak, its own
asymptote—that is, whether some degree of certainty is given which one can never
exceed.

Here’s how to give a technical formulation of the question Bernoulli wants us to contemplate.
Repeatedly performing some random experiment corresponds to defining n random variables
equal to the results of n trials of the experiment. That is, we let G1, . . . , Gn be independent random
variables with the same distribution and the same expectation, µ. Now let An be the average of
the results, that is,

An ::=
∑n

i=1 Gi

n
.

How sure we can be that the average value, An, will be close to µ? By letting n grow large enough,
can we be as certain as we want that the average will be close, or is there is some irreducible
degree of uncertainty that remains no matter how many trials we perform? More precisely, given
any positive tolerance, ε, how sure can we be that the average, An, will be within the tolerance of
µ as n grows? In other words, we are asking about the limit

lim
n→∞

Pr {|An − µ| < ε} .

Bernuolli asks if we can be sure this limit approaches certainty, that is, equals one, or whether it
approaches some number slightly less than one that cannot be increased to one no matter how
many times we repeat the experiment. His answer is that the limit is indeed one. This result is
now known as the Weak Law of Large Numbers. Bernoulli says of it:

Therefore, this is the problem which I now set forth and make known after I have
pondered over it for twenty years. Both its novelty and its very great usefulness, cou-
pled with its just as great difficulty, can exceed in weight and value all the remaining
chapters of this thesis.

With the benefit of three centuries of mathematical development since Bernoulli, it will be a lot
easier for us to resolve Bernoulli’s questions than it originally was for him.

1.2 The Weak Law of Large Numbers

The Weak Law of Large Numbers crystallizes, and confirms, the intuition of Bernoulli’s “stupidest
man” that the average of a large number of independent trials is less and less likely to be outside
a smaller and smaller tolerance around the expectation as the number of trials grows.

Theorem 1.1. [Weak Law of Large Numbers] Let G1, . . . , Gn, . . . be independent variables with the same
distribution and the same expectation, µ. For any ε > 0,

lim
n→∞

Pr
{∣∣∣∣∑n

i=1 Gi

n
− µ

∣∣∣∣ ≥ ε

}
= 0.



Course Notes, Week 14: Sampling; Random Walk 3

This Law gives a high-level description of a fundamental probabilistic phenomenon, but as it
stands it does not give enough information to be of practical use. The main problem is that it
does not say anything about the rate at which the limit is approached. That is, how big must n
be to be within a given tolerance of the expected value with a specific desired probability? This
information is essential in applications. For example:

• Suppose we want to estimate the number of voters who are registered Republicans. Exactly
how many randomly selected voters should we poll in order to be sure that 99% of the time,
the average number of Republicans in our poll is within 1/2%, that is, within 0.005, of the
actual percentage in the whole country?

• Suppose we want to estimate the number of fish in a lake. Our procedure will be to catch,
tag and release 500 fish caught in randomly selected locations in the lake at random times of
day. Then we wait a few days, and catch another 100 random fish. Suppose we discover that
10 of the 100 were previously tagged. Assuming that our 500 tagged fish represent the same
proportion of the whole fish population as the ones in our sample of 100, we would estimate
that the total fish population was 5000. But how confident can we be of this? Specifically, how
confident should we be that our estimate of 5000 is within 20% of the actual fish population?

• Suppose we want to estimate the average size of fish in the lake by taking the average of the
sizes of the 500 in our initial catch. How confident can we be that this average is within 2%
of the average size of all the fish in the lake?

In these Notes we first prove a basic result we call the Pairwise Independent Sampling Theorem.
It provides the additional information about rate of convergence we need to calculate numerical
answers to questions such as those above. It simply summarizes in very slightly more general
form, the reasoning we used in Notes 13 to determine the sample size needed to estimate voter
preference.

The Sampling Theorem follows from Chebyshev’s Theorem and properties of the variance of a
sum of independent variables. A version of the Weak Law of Large Numbers will then be an easy
corollary of the Pairwise Independent Sampling Theorem.

1.3 Pairwise Independent Sampling

Theorem 1.2. [Pairwise Independent Sampling] Let

Sn ::=
n∑

i=1

Gi (1)

where G1, . . . , Gn are pairwise independent variables with the same mean, µ, and deviation, σ. Then

Pr
{∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ x

}
≤ 1

n

(σ

x

)2
. (2)
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Proof. We observe first that the expectation of Sn/n is µ:

E
[
Sn

n

]
= E

[∑n
i=1 Gi

n

]
(by def. of Sn)

=
∑n

i=1 E [Gi]
n

(linearity of expectation)

=
∑n

i=1 µ

n

=
nµ

n
= µ. (3)

The second important property of Sn/n is that its variance is the variance of Gi divided by n:

Var
[
Sn

n

]
=

1
n2

Var [Sn] (Var [aR] = a2 Var [R])

=
1
n2

Var

[
n∑

i=1

Gi

]
(def. of Sn)

=
1
n2

n∑
i=1

Var [Gi] (pairwise independent additivity)

=
1
n2

· nσ2 =
σ2

n
. (4)

This is enough to apply Chebyshev’s Bound and conclude:

Pr
{∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ x

}
≤ Var [Sn/n]

x2
. (Chebyshev’s bound)

=
σ2/n

x2
(by (4))

=
1
n

(σ

x

)2
.

Theorem 1.2 provides a precise general statement about how the average of independent samples
of a random variable approaches the mean. It generalizes to many cases when Sn is the sum of
independent variables whose mean and deviation are not necessarily all the same, though we shall
not develop such generalizations here.

1.4 Proof of the Weak Law

Theorem 1.3. [Pairwise Independent Weak Law] Let

Sn ::=
n∑

i=1

Gi,

where G1, . . . , Gn, . . . are pairwise independent variables with the same expectation, µ, and standard devi-
ation, σ. For any ε > 0,

lim
n→∞

Pr
{∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

}
= 0.
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Proof. Choose x in Theorem 1.2 to be ε. Then, given any δ > 0, choose n large enough to make
(σ/x)2/n < δ. By Theorem 1.2,

Pr
{∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

}
< δ.

So the limiting probability must equal zero.

Notice that for the sake of simplicity and motivation, we chose to state at the outset a Weak Law,
namely Theorem 1.1, that does not mention variance, but only requires finite expectation. On the
other hand, Theorem 1.3 requires finite variance, and so does not directly imply Theorem 1.1.

But notice also that Theorem 1.1 requires that the variables have the same distribution and are the
mutually independent. On the other hand, Theorem 1.3 requires only pairwise independence and
does not require the distributions to be the same, only that expectations and variances are the
same. The pairwise independent version, Theorem 1.3, proved above is enough for nearly all
applications. Theorem 1.1 only comes into play when the variance is unbounded; this case is not
important to us, so we omit a proof of Theorem 1.1.

1.4.1 Oscillations in the Average

A weakness of both the Weak Law as well as our Pairwise Independence Sampling Theorem 1.2 is
that neither provides any information about the way the average value of the observations may be
expected to oscillate in the course of repeated experiments. In later Notes we will briefly consider
a Strong Law of Large Numbers which deals with the oscillations. Such oscillations may not be
important in our example of polling about Gore’s popularity or of birthday matches, but they
are critical in gambling situations, where large oscillations can bankrupt a player, even though the
player’s average winnings are assured in the long run. As the famous economist Keynes is alleged
to have remarked, the problem is that “In the long run, we are all dead.”

1.5 Confidence Levels

Now suppose as in Notes 13, that a pollster uses the Pairwise Independence Sampling Theorem, or
even better, an estimation of the binomial distribution, to conclude that a sample of 662 random
voters will yield an estimate of the fraction, p, of voters who prefer Gore that is in the interval
p± 0.04 with probability at least 0.95.

The pollster takes his sample and finds that 364 prefer Gore. It’s tempting, but sloppy, to say that
this means

“With probability 0.95, the fraction, p, of voters who prefer Gore is 364/662 ± 0.04. But
364/662− 0.04 > 0.50, so there is a 95% chance that more than half the voters prefer Gore.”

What’s objectionable about this statement is that it talks about the probability or “chance” that a
real world fact is true, namely that the actual fraction, p, of voters favoring Gore is more than 0.50.
But p is what it is, and it simply makes no sense to talk about the probability that it is something
else. For example, suppose p is actually 0.49; then it’s nonsense to ask about the probability that it
is within 0.04 of 365/662 – it simply isn’t.

A more careful summary of what we have accomplished goes this way:
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We have described a probabilistic procedure for estimating the value of the actual frac-
tion, p. The probability that our estimation procedure will yield a value within 0.04 of p
is 0.95.

This is a bit of a mouthful, so special phrasing closer to the sloppy language is commonly used.
The pollster would describe his conclusion by saying that

At the 95% confidence level, the fraction of voters who prefer Gore is 364/662± 0.04.

It’s important to remember that confidence levels refer to the results of estimation procedures for
real-world quantities. The real-world quantity being estimated is typically unknown, but fixed;
it is not a random variable, so it makes no sense to talk about the probability that it has some
property.

2 Random Walks

2.1 Gamblers’ Ruin

Random Walks nicely model many natural phenomena in which a person, or particle, or pro-
cess takes steps in a randomly chosen sequence of directions. For example in Physics, three-
dimensional random walks are used to model Brownian motion and gas diffusion. In Computer
Science, the Google search engine uses random walks through the graph of world-wide web links
to determine the relative importance of websites. In Finance Theory, there is continuing debate
about the degree to which one-dimensional random walks can explain the moment-to-moment
or day-to-day fluctuations of market prices. In these Notes we consider 1-dimensional random
walks: walks along a straight line. Our knowledge of expectation and deviation will make 1-
dimensional walks easy to analyze, but even these simple walks exhibit probabilistic behavior
that can be astonishing.

In the Mathematical literature, random walks are for some reason traditionally discussed in the
context of some social vice. A one-dimensional random walk is often described as the path of a
drunkard who randomly staggers left or right at each step. In the rest of these Notes, we examine
one-dimensional random walks using the language of gambling. In this case, a position during
the walk is a gambler’s cash-on-hand or capital, and steps on the walk are bets whose random
outcomes increase or decrease his capital. We will be interested in two main questions:

1. What is the probability that the gambler wins?

2. How long must the gambler expect to wait for the walk to end?

In particular, we suppose a gambler starts with n dollars. He makes a sequence of $1 bets. If he
wins an individual bet, he gets his money back plus another $1. If he loses, he loses the $1. In each
bet, he wins with probability p > 0 and loses with probability q ::= 1 − p > 0. The gambler plays
until either he is bankrupt or increases his capital to a goal amount of T dollars. If he reaches his
goal, then he is called an overall winner, and his profit will be m ::= T − n dollars. If his capital
reaches zero dollars before reaching his goal, then we say that he is “ruined” or goes broke.
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capital
gambler’s

n

T = n + m

time

bet outcomes:
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Figure 1: This is a graph of the gambler’s capital versus time for one possible sequence of bet outcomes. At
each time step, the graph goes up with probability p and down with probability 1−p. The gambler continues
betting until the graph reaches either 0 or T = n + m.

The gambler’s situation as he proceeds with his $1 bets is illustrated in Figure 1. The random walk
has boundaries at 0 and T . If the random walk ever reaches either of these boundary values, then
it terminates. We want to determine the probability, w, that the walk terminates at boundary T ,
namely, the probability that the gambler is a winner.

In a fair game, p = q = 1/2. The corresponding random walk is called unbiased. The gambler is
more likely to win if p > 1/2 and less likely to win if p < 1/2; the corresponding random walks
are called biased.

Example 2.1. Suppose that the gambler is flipping a coin, winning $1 on Heads and losing $1 on
Tails. Also, the gambler’s starting capital is n = 500 dollars, and he wants to make m = 100
dollars. That is, he plays until he goes broke or reaches a goal of T = n + m = $600. What is the
probability that he is a winner? We will show that in this case the probability w = 5/6. So his
chances of winning are really very good, namely, 5 chances out of 6.

Now suppose instead, that the gambler chooses to play roulette in an American casino, always
betting $1 on red. A roulette wheel has 18 black numbers, 18 red numbers, and 2 green numbers.
In this game, the probability of winning a single bet is p = 18/38 ≈ 0.47. It’s the two green
numbers that slightly bias the bets and give the casino an edge. Still, the bets are almost fair,
and you might expect that the gambler has a reasonable chance of reaching his goal—the 5/6
probability of winning in the unbiased game surely gets reduced, but perhaps not too drastically.
Not so! His odds of winning against the “slightly” unfair roulette wheel are less than 1 in 37,000. If
that seems surprising, listen to this: no matter how much money the gambler has to start, e.g., $5000,
$50,000, $5 · 1012, his odds are still less than 1 in 37,000 of winning a mere 100 dollars!

Moral: Don’t play!

The theory of random walks is filled with such fascinating and counter-intuitive conclusions.
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2.2 The Probability Space

Each random-walk game corresponds to a path like the one in Figure 1 that starts at the point
(n, 0). A winning path never touches the x axis and ends when it first touches the line y = T .
Likewise, a losing path never touches the line y = T and ends when it first touches the x axis.

Any length k path can be characterized by the history of wins and losses on individual $1 bets, so
we use a length k string of W ’s and L’s to model a path, and assign probability prqk−r to a string
that contains r W ’s. The outcomes in our sample space will be precisely those string corresponding
to winning or losing walks.

What about the infinite walks in which the gambler plays forever, neither reaching his goal nor
going bankrupt? A recitation problem will show the probability of playing forever is zero, so we
don’t need to include any such outcomes in our sample space.

As a sanity check on this definition of the probability space, we should verify that the sum of the
outcome probabilities is one, but we omit this calculation.

2.3 The Probability of Winning

2.4 The Unbiased Game

Let’s begin by considering the case of a fair coin, that is, p = 1/2, and determine the probability,
w, that the gambler wins. We can handle this case by considering the expectation of the random
variable G equal to the gambler’s dollar gain. That is, G = T −n if the gambler wins, and G = −n
if the gambler loses, so

E [G] = w(T − n)− (1− w)n = wT − n.

Notice that we’re using the fact that the only outcomes are those in which the gambler wins or
loses—there are no infinite games—so the probability of losing is 1− w.

Now let Gi be the amount the gambler gains on the ith flip: Gi = 1 if the gambler wins the flip,
Gi = −1 if the gambler loses the flip, and Gi = 0 if the game has ended before the ith flip. Since
the coin is fair, E [Gi] = 0.

The random variable G is the sum of all the Gi’s, so by linearity of expectation2

wT − n = E(G) =
∞∑
i=1

E(Gi) = 0,

which proves

2We’ve been stung by paradoxes in this kind of situation, so we should be careful to check that the condition for
infinite linearity of expectation is satisfied. Namely, we have to check that

∑∞
i=1 E [|Gi|] converges.

In this case, |Gi| = 1 iff the walk is of length at least i, and |Gi| = 0 otherwise. So

E [|Gi|] = Pr {the walk is of length ≥ i} .

But a recitation problem will show that there is a constant r < 1 such that

Pr {the walk is of length ≥ i} = O(ri).

So the
∑∞

i=1 E [|Gi|] is bounded term-by-term by a convergent geometric series, and therefore it also converges.
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Theorem 2.2. In the unbiased Gambler’s Ruin game with probability p = 1/2 of winning each individual
bet, with initial capital, n, and goal, T ,

Pr {the gambler is a winner} =
n

T
. (5)

Example 2.3. Suppose we have $100 and we start flipping a fair coin, betting $1 with the aim of
winning $100. Then the probability of reaching the $200 goal is 100/200 = 1/2—the same as the
probability of going bankrupt. In general, if T = 2n, then the probability of doubling your money
or losing all your money is the same. This is about what we would expect.

Example 2.4. Suppose we have $500 and we start flipping a fair coin, betting $1 with the aim of
winning $100. So n = 500, T = 600, and Pr {win} = 500/600 = 5/6, as we claimed at the outset.

Example 2.5. Suppose Albert starts with $100, and Eric starts with $10. They flip a fair coin, and
every time a Head appears, Albert wins $1 from Eric, and vice versa for Tails. They play this game
until one person goes bankrupt. What is the probability of Albert winning?

This problem is identical to the Gambler’s Ruin problem with n = 100 and T = 100+10 = 110. The
probability of Albert winning is 100/110 = 10/11, namely, the ratio of his wealth to the combined
wealth. Eric’s chances of winnning are 1/11.

Note that although Albert will win most of the time, the game is still fair. When Albert wins,
he only wins $10; when he loses, he loses big: $100. Albert’s—and Eric’s—expected win is zero
dollars.

Another intuitive idea is confirmed by this analysis: the larger the gambler’s initial stake, the
larger the probability that he will win a fixed amount.

Example 2.6. If the gambler started with one million dollars instead of 500, but aimed to win the
same 100 dollars as in the Example 2.4, the probability of winning would increase to 1M/(1M +
100) > .9999.

2.5 A Recurrence for the Probability of Winning

To handle the case of a biased game we need a more general approach. We consider the probability
of the gambler winning as a function of his initial capital. That is, let p and T be fixed, and let wn

be the gambler’s probabiliity of winning when his initial capital is n dollars. For example, w0 is
the probability that the gambler will win given that he starts off broke; clearly, w0 = 0. Likewise,
wT = 1.

Otherwise, the gambler starts with n dollars, where 0 < n < T . Consider the outcome of his first
bet. The gambler wins the first bet with probability p. In this case, he is left with n + 1 dollars and
becomes a winner with probability wn+1. On the other hand, he loses the first bet with probability
q ::= 1− p. Now he is left with n− 1 dollars and becomes a winner with probability wn−1. Overall,
he is a winner with probability wn = pwn+1 + qwn−1. Solving for wn+1 we have

wn+1 =
wn

p
− wn−1

q

p
. (6)

This kind of inductive definition of a quantity wn+1 in terms of a linear combination of values wk

for k < n+1 is called a homogeneous linear recurrence. There is a simple general method for solving
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such recurrences which we now illustrate. The method is based on a guess that the form of the
solution is wn = cn for some c 6= 0. It’s not obvious why this is a good guess, but we now show
how to find the constant c and verify the guess.

Namely, from (6) we have

wn+1 −
wn

p
+ wn−1

q

p
= 0. (7)

If our guess is right, then this is equivalent to

cn+1 − cn

p
+ cn−1 q

p
= 0.

Now factoring out cn−1 gives

c2 − c

p
+

q

p
= 0.

Solving this quadratic equation in c yields two roots, (1− p)/p and 1. So if we define wn ::= ((1−
p)/p)n = (q/p)n, then (7), and hence (6) is satisifed. We can also define wn ::= 1n and satisfy (7).
Since the lefthand side of (7) is zero using either definition, it follows that any definition of the
form

wn ::= A

(
q

p

)n

+ B · 1n

will also satisfy (7). Now our boundary conditions, namely the values of w0 and wT , let us solve
for A and B:

0 = w0 = A + B,

1 = wT = A

(
q

p

)T

+ B,

so

A =
1

(q/p)T − 1
, B = −A, (8)

and therefore

wn =
(q/p)n − 1
(q/p)T − 1

. (9)

Our derivation of (9) ensures that it gives a formula for wn which satisfies (6) and has the right
values at n = 0 and n = T . Moreover, the values determined by (9) are the only ones that sat-
isfy (6) and the boundary conditions at 0 and T , though we won’t prove this. This implies that the
Gambler’s probability of winning is indeed given by (9).

The solution (9) only applies to biased walks, since we require p 6= q so the denominator is not
zero. That’s ok, since we already worked out that the case when p = q in Theorem 2.2. So we have
shown:

Theorem 2.7. In the biased Gambler’s Ruin game with probability, p 6= 1/2, of winning each bet, with
initial capital, n, and goal, T ,

Pr {the gambler is a winner} =
(q/p)n − 1
(q/p)T − 1

. (10)
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The expression (10) for the probability that the Gambler wins in the biased game is a little hard
to interpret. There is a simpler upper bound which is nearly tight when the gambler’s starting
capital is large.

Suppose that p < 1/2; that is, the game is biased against the gambler. Then both the numerator
and denominator in the quotient in (10) are positive, and the quotient is less than one. So adding
1 to both the numerator and denominator increases the quotient3, and the bound (10) simplifies to
(q/p)n/(q/p)T = (p/q)T−n, which proves

Corollary 2.8. In the Gambler’s Ruin game biased against the Gambler, that is, with probability p < 1/2
of winning each bet, with initial capital, n, and goal, T ,

Pr {the gambler is a winner} <

(
p

q

)m

, (11)

where m ::= T − n.

The amount m = T − n is called the Gambler’s intended profit. So the gambler gains his intended
profit, m, before going broke with probability at most (p/q)m. Notice that this upper bound does
not depend on the gambler’s starting capital, but only on his intended profit. The consequences
of this are amazing:

Example 2.9. Suppose that the gambler starts with $500 aiming to profit $100, this time by making
$1 bets on red in roulette. By (11), the probability, wn, that he is a winner is less than(

18/38
20/38

)100

=
(

9
10

)100

<
1

37, 648
.

This is a dramatic contrast to the unbiased game, where we saw in Example 2.4 that his probability
of winning was 5/6.

Example 2.10. We also observed that with $1,000,000 to start in the unbiased game, he was almost
certain to win $100. But betting against the “slightly” unfair roulette wheel, even starting with
$1,000,000, his chance of winning $100 remains less than 1 in 37,648! He will almost surely lose all
his $1,000,000. In fact, because the bound (11) depends only on his intended profit, his chance of
going up a mere $100 is less than 1 in 37,648 no matter how much money he starts with!

The bound (11) is exponential in m. So, for example, doubling his intended profit will square his
probability of winning.

Example 2.11. The probability that the gambler’s stake goes up 200 dollars before he goes broke
playing roulette is at most

(9/10)200 = ((9/10)100)2 =
(

1
37, 648

)2

,

which is about 1 in 70 billion.
3 If 0 < a < b, then

a

b
<

a + 1

b + 1
,

because
a

b
=

a(1 + 1/b)

b(1 + 1/b)
=

a + a/b

b + 1
<

a + 1

b + 1
.



12 Course Notes, Week 14: Sampling; Random Walk

The odds of winning a little money are not so bad.
Example 2.12. Applying the exact formula (10), we find that the probability of winning $10 before
losing $10 is (

20/38
18/38

)10
− 1(

20/38
18/38

)20
− 1

= 0.2585 . . .

This is somewhat worse than the 1 in 2 chance in the fair game, but not dramatically so.

Thus, in the fair case, it helps a lot to have a large bankroll, whereas in the unfair case, it doesn’t
help much.

2.6 Intuition

Why is the gambler so unlikely to make money when the game is slightly biased against him?
Intuitively, there are two forces at work. First, the gambler’s capital has random upward and
downward swings due to runs of good and bad luck. Second, the gambler’s capital will have
a steady, downward drift, because he has a small, negative expected return on every bet. The
situation is shown in Figure 2.

For example, in roulette the gambler wins a dollar with probability 9/19 and loses a dollar with
probability 10/19. Therefore, his expected return on each bet is 9/10 − 10/19 = −1/19 ≈ −0.053
dollars. That is, on each bet his capital is expect to drift downward by a little over 5 cents.

Our intuition is that if the gambler starts with a trillion dollars, then he will play for a very long
time, so at some point there should be a lucky, upward swing that puts him $100 ahead. The
problem is that his capital is steadily drifting downward. If the gambler does not have a lucky,
upward swing early on, then he is doomed. After his capital drifts downward a few hundred
dollars, he needs a huge upward swing to save himself. And such a huge swing is extremely
improbable. As a rule of thumb, drift dominates swings in the long term.

We can quantify these drifts and swings. After k rounds for k ≤ min(m,n), the number of wins by
our player has a binomial distribution with parameters p < 1/2 and k. His expected win on any
single bet is p − q = 2p − 1 dollars, so his expected capital is n − k(1 − 2p). Now to be a winner,
his actual number of wins must exceed the expected number by m + k(1− 2p). But we saw before
that the binomial distribution has a standard deviation of only

√
kp(1− p). So for the gambler to

win, he needs his number of wins to deviate by

m + k(1− 2p)√
kp(1− 2p)

= Θ(
√

k)

times its standard deviation. In our study of binomial tails we saw that this was extremely un-
likely.

In a fair game, there is no drift; swings are the only effect. In the absence of downward drift, our
earlier intuition is correct. If the gambler starts with a trillion dollars then almost certainly there
will eventually be a lucky swing that puts him $100 ahead.

If we start with $10 and play to win only $10 more, then the difference between the fair and unfair
games is relatively small. We saw that the probability of winning is 1/2 versus about 1/4. Since
swings of $10 are relatively common, the game usually ends before the gambler’s capital can drift
very far. That is, the game does not last long enough for drift to dominate the swings.
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T = n + m

time

gambler’s
capital

n

downward
drift

swing
upward

(too late!)

Figure 2: In an unfair game, the gambler’s capital swings randomly up and down, but steadily drifts
downward. If the gambler does not have a winning swing early on, then his capital drifts downward, and
later upward swings are insufficient to make him a winner.

2.7 How Long a Walk?

Now that we know the probability, wn, that the gambler is a winner in both fair and unfair games,
we consider how many bets he needs on average to either win or go broke.

2.8 Duration of a Biased Walk

Let Q be the number of bets the gambler makes until the game ends. Since the gambler’s expected
win on any bet is 2p − 1, Wald’s Theorem should tell us that his game winnings, G, will have
expectation E [Q] (2p− 1). That is,

E [G] = (2p− 1) E [Q] , (12)

In an unbiased game (12) is trivially true because both 2p − 1 and the expected overall winnings,
E [G], are zero. On the other hand, in the unfair case, 2p− 1 6= 0. Also, we know that

E [G] = wn(T − n)− (1− wn)n = wnT − n.

So assuming (12), we conclude

Theorem 2.13. In the biased Gambler’s Ruin game with initial capital, n, goal, T , and probability, p 6= 1/2,
of winning each bet,

E [number of bets till game ends] =
Pr {gambler is a winner}T − n

2p− 1
. (13)

The only problem is that (12) is not a special case of Wald’s Theorem because G =
∑Q

i=1 Gi is not
a sum of nonnegative variables: when the gambler loses the ith bet, the random variable Gi equals
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−1. However, this is easily dealt with.4

Example 2.14. If the gambler aims to profit $100 playing roulette with n dollars to start, he can
expect to make ((n + 100)/37, 648− n)/(2(18/38)− 1) ≈ 19n bets before the game ends. So he can
enjoy playing for a good while before almost surely going broke.

2.9 Duration of an Unbiased Walk

This time, we need the more general approach of recurrences to handle the unbiased case. We
consider the expected number of bets as a function of the gambler’s initial capital. That is, for
fixed p and T , let en be the expected number of bets until the game ends when the gambler’s
initial capital is n dollars. Since the game is over in no steps if n = 0 or T , the boundary conditions
this time are e0 = eT = 0.

Otherwise, the gambler starts with n dollars, where 0 < n < T . Now by the conditional expec-
tation rule, the expected number of steps can be broken down into the expected number of steps
given the outcome of the first bet weighted by the probability of that outcome. That is,

en = p E [Q | gambler wins first bet] + q E [Q | gambler loses first bet] .

But after the gambler wins the first bet, his capital is n + 1, so he can expect to make another en+1

bets. That is,
E [Q | gambler wins first bet] = 1 + en+1,

and similarly,
E [Q | gambler loses first bet] = 1 + en−1.

So we have
en = p(1 + en+1) + q(1 + en−1) = pen+1 + qen−1 + 1,

which yields the linear recurrence

en+1 =
en

p
− q

p
en−1 −

1
p
.

4The random variable Gi +1 is nonnegative, and E [Gi + 1 | Q ≥ i] = E [Gi | Q ≥ i]+1 = 2p, so by Wald’s Theorem

E

[
Q∑

i=1

(Gi + 1)

]
= 2p E [Q] . (14)

But

E

[
Q∑

i=1

(Gi + 1)

]
= E

[
Q∑

i=1

Gi +

Q∑
i=1

1

]

= E

[
(

Q∑
i=1

Gi) + Q

]

= E

[
Q∑

i=1

Gi

]
+ E [Q]

= E [G] + E [Q] . (15)

Now combining (14) and (15) confirms the truth of our assumption (12).



Course Notes, Week 14: Sampling; Random Walk 15

For p = q = 1/2, this equation simplifies to

en+1 = 2en − en−1 − 2. (16)

There is a general theory for solving linear recurrences like (16) in which the value at n + 1 is a
linear combination of values at some arguments k < n + 1 plus another simple term—in this case
plus the constant −2. This theory implies that

en = (T − n)n. (17)

Fortunately, we don’t need the general theory to verify this solution. Equation (17) can be verified
routinely from the boundary conditions and (16) using strong induction on n.

So we have shown

Theorem 2.15. In the unbiased Gambler’s Ruin game with initial capital, n, and goal, T , and probability,
p = 1/2, of winning each bet,

E [number of bets till game ends] = n(T − n). (18)

Another way to phrase Theorem 2.15 is

E [number of bets till game ends] = initial capital · intended profit. (19)

Now for example, we can conclude that if the gambler starts with $10 dollars and plays until he
is broke or ahead $10, then 10 · 10 = 100 bets are required on average. If he starts with $500 and
plays until he is broke or ahead $100, then the expected number of bets until the game is over is
500× 100 = 50, 000.

Notice that (19) is a very simple answer that cries out for an intuitive proof, but we have not found
one.

2.10 Quit While You Are Ahead

Suppose that the gambler never quits while he is ahead. That is, he starts with n > 0 dollars,
ignores any goal T , but plays until he is flat broke. Then it turns out that if the game is not
favorable, i.e., p ≤ 1/2, the gambler is sure to go broke. In particular, he is even sure to go broke
in a “fair” game with p = 1/2. 5

Lemma 2.16. If the gambler starts with one or more dollars and plays a fair game until he is broke, then he
will go broke with probability 1.

Proof. If the gambler has initial capital n and goes broke in a game without reaching a goal T , then
he would also go broke if he were playing and ignored the goal. So the probability that he will
lose if he keeps playing without stopping at any goal T must be at least as large as the probability
that he loses when he has a goal T > n.

But we know that in a fair game, the probability that he loses is 1 − n/T . This number can be
made arbitrarily close to 1 by choosing a sufficiently large value of T . Hence, the probability of
his losing while playing without any goal has a lower bound arbitrarily close to 1, which means it
must in fact be 1.

5If the game is favorable to the gambler, i.e., p > 1/2, then we could show that there is a positive probability that the
gambler will play forever, but we won’t examine this case in these Notes.
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So even if the gambler starts with a million dollars and plays a perfectly fair game, he will even-
tually lose it all with probability 1. In fact, if the game is unfavorable, then Theorem 2.13 and
Corollary 2.8 imply that his expected time to go broke is essentially proportional to his initial
capital, i.e., Θ(n).

But there is good news: if the game is fair, he can “expect” to play for a very long time before
going broke; in fact, he can expect to play forever!

Lemma 2.17. If the gambler starts with one or more dollars and plays a fair game until he goes broke, then
his expected number of plays is infinite.

Proof. Consider the gambler’s ruin game where the gambler starts with initial capital n, and let
un be the expected number of bets for the unbounded game to end. Also, choose any T ≥ n, and as
above, let en be the expected number of bets for the game to end when the gambler’s goal is T .

The unbounded game will have a larger expected number of bets compared to the bounded game
because, in addition to the possibility that the gambler goes broke, in the bounded game there is
also the possibility that the game will end when the gambler reaches his goal, T . That is,

un ≥ en.

So by (17),
un ≥ n(T − n).

But n ≥ 1, and T can be any number greater than or equal to n, so this lower bound on un can be
arbitrarily large. This implies that un must be infinite.

Now by Lemma 2.16, with probability 1, the unbounded game ends when the gambler goes broke.
So the expected time for the unbounded game to end is the same as the expected time for the
gambler to go broke. Therefore, the expected time to go broke is infinite.

In particular, even if the gambler starts with just one dollar, his expected number of plays before
going broke is infinite! Of course, this does not mean that it is likely he will play for long. For
example, there is a 50% chance he will lose the very first bet and go broke right away.

Lemma 2.17 says that the gambler can “expect” to play forever, while Lemma 2.16 says that with
probability 1 he will go broke. These Lemmas sound contradictory, but our analysis showed that
they are not. A moral is that naive intuition about “expectation” is misleading when we consider
limiting behavior according to the technical mathematical definition of expectation.

3 Infinite Expectation

So what are we to make of such a random variable with infinite expectation? For example, suppose
we repeated the experiment of having the gambler make fair bets with initial stake one dollar until
he went broke, and we kept a record of the average number of bets per experiment. Our theorems
about deviation from the mean only apply to random variables with finite expectation, so they
don’t seem relevant to this situation. But in fact they are.
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For example, let Q be the number of bets required for the gambler to go broke in a fair game
starting with one dollar. We could use some of our combinatorial techniques to show that

Pr {Q = m} = Θ(m−3/2). (20)

This implies that

E [Q] = Θ

( ∞∑
m=1

m ·m−3/2

)
= Θ

( ∞∑
m=1

m−1/2

)
.

We know this last series is divergent, so we have another proof that Q has infinite expectation.

But suppose we let R ::= Q1/5. Then the estimate (20) also lets us conclude that

E [R] = Θ

( ∞∑
m=1

m−13/10

)

and

E
[
R2
]

= Θ

( ∞∑
m=1

m−11/10

)
.

Since both these series are convergent, we can conclude that Var [R] is finite. Now our theorems
about deviation can be applied to tell us that the average fifth root of the number of bets to go broke
is very likely to converge to a finite expected value.

We won’t go further into the details, but the moral of this discussion is that our results about
deviation from a finite mean can still be applied to natural models like random walks where
variables with infinite expectation may play an important role.

4 Review of Markov, Chebyshev and Binomial bounds

Let us review the methods we have for bounding deviation from the mean via the following
example. Assume that I.Q. is made up of thinkatons; each thinkaton fires independently with a
10% chance. We have 1000 thinkatons in all, and I.Q. is the number of thinkatons that fire. What
is the probability of having a truly extraordinary IQ6 of 228?

So the I.Q. is a Binomial distribution with n = 1000, p = 0.1. Hence, E [I.Q.] = 100, σI.Q. =√
0.09× 1000 = 9.48.

An I.Q. of 228 is 128/9.48 > 13.5 standard deviations away.

Let us compare the methods we have for bounding the probability of this I.Q..

1. Markov:
Pr {I.Q. ≥ 228} ≤ 100

228
< 0.44

2. Chebyshev:

Pr {I.Q. − 100 ≥ 128} ≤ 1
13.52 + 1

<
1

183
6Marilyn vos Savant, author of the “Ask Marilyn” newspaper column mentioned in Notes 10 is alleged to have an

I.Q. of 228.
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3. Binomial tails:

Pr {I.Q. ≥ 228} = Pr {1000− I.Q. ≤ 772} = F0.9,1000(772) < 10−31

Here we used the formula for the binomial tail from Notes 12 with p = 0.9, n = 1000, α =
0.772.

Most applications involve probability distributions for which the Markov and Chebyshev bounds
are very weak. So in general, the more we know about the distribution, the better bounds we
can obtain on probability of deviation. Of course there are distributions where the Markov and
Chebyshev bounds are best possible; in those cases, knowledge of the distribution obviously does
not lead to better bounds.

http://theory.lcs.mit.edu/classes/6.042/fall03/handouts/lectures/ln12.pdf
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