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His industry and genius have left a permanent impression in every
field of mathematics; and although his contributions to the Theory
of Probability relate to subjects of comparatively small importance,
yet they will be found not unworthy of his own great powers and
fame.

Isaac Todhunter on Leonard Euler[1]

1 Introduction

Volume I.7 of Leonard Euler’s Opera Omnia is probably most often consulted
for a handful of papers on famous mathematical problems: the Bridges of
Königsberg, the Knight’s Tour, Magic Squares, the problem of Derangements
and the Josephus Problem. These gems of recreational mathematics are to be
found nearly buried among the more prevalent subject matter of the volume:
some two dozen entries concerning probability theory and related subjects.

“Towards the middle of his life,” wrote Louis Gustave du Pasquier, the editor
of volume I.7, “Euler devoted a portion of his universal interest to the study of
the theory of risk and . . . to questions involving the calculus of probability [2, p.
xxiii].” Alongside articles on observational error, mathematical statistics and the
foundations of life insurance, volume I.7 contains eight memoirs and a fragment
concerning probability theory on finite sample spaces. All of these are inspired
by games of chance, be it the casino game Pharaon, the card game Rencontre,
or the well-known Petersburg Problem. However, the greatest portion of Euler’s
writings on probability theory relate to the Genoese lottery.

Lotteries, the drawing of prizes “by lot,” are as old as the written word.
There are examples of goods being distributed by lot in ancient Israel and
classical Rome but the more modern notion of a lottery as a form of gambling
appears to have originated in Europe during the Renaissance. Florence is usually
credited with holding, in 1530, the first public lottery in which chances were
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sold and cash prizes awarded, although the practice appears actually to have
originated in Venice during the 1520s [3]. In any case, these early lotteries were
of the type still used today for amateur fundraising events: a receipt for each
ticket sold, bearing the player’s name or some identifying number, was placed
in an urn or other receptacle, and the winning tickets were drawn at random.
The key development that would make large-scale lotteries possible was to be
developed in a different Italian city-state, Genoa.

As early as the 11th century, executive power in the Genoese republic was
vested in a small group of Consigliori, or Counselors. When Andrea Doria
(1466-1560) ousted the French from Genoa in 1528 and assumed the mantle of
Doge, he instituted government reforms which saw him sharing power with a
council of five Consigliori. These were chosen by lot from a group of Senatori,
or Senators, variously reported to number 100 [2] or 120 [3]. The residents of
Genoa (where, according to du Pasquier, games of chance had been popular
since time immemorial) took to placing bets on the outcome of the draw. Some
time later, the number of candidates was reduced to 90, and the drawing was
done by extracting numbered balls from an urn.

It was in 1620 that the idea of drawing five numbers from a list of 90 as
a pure game of chance was abstracted from the election process. The credit
for this is given to a local official named Benedetto Gentile. By 1643, the
Genoese republic institutionalized such a lottery as a means of raising revenue
for the state. In 1665, similar lotteries were established in Milan, Naples and
Venice. Popes Innocent XI and XII tried unsuccessfully to reverse the trend, but
eventually even the Vatican succumbed to the temptation of lottery revenues,
and the Genoese lottery came to Rome in 1732.

Even today, the Italian government sponsors a state lottery called ‘Lotto’,
which involves drawing five balls from a ruota, or wheel, containing balls num-
bered 1, 2, 3, . . . , 90. Fittingly, Genoa is one of ten cities in which weekly draw-
ings are held.

2 The Royal Charge

In the middle of the 18th century, the Italian craze for lotteries swept the Eu-
ropean continent. It was thus that an Italian named Roccolini approached
Frederick the Great of Prussia in 1749 with a scheme to establish a Genoese-
style lottery in Berlin. This was some eight years after Leonard Euler had come
to Frederick’s court from St. Petersburg. The king, as was his custom when
mathematical matters were involved, called upon Euler for counsel.

Euler was already working on a royal assignment when Frederick’s letter
of 15 September 1749 arrived, along with a copy of Roccolini’s proposal for
the Berlin lottery. Euler set aside the earlier assignment – the design of a new
hydraulic system for Frederick’s summer palace, Sans-Souci – and two days later
returned his analysis of the proposal to the king.

Roccolini’s proposal involved the usual drawing of 5 numbers from a list of
90 and offered three principal ways for gamblers to place their wagers:
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simple The player chooses one number between 1 and 90 and pays 8 écus to
play. If the chosen number is among the 5 numbers drawn, the player wins
100 écus.

ambo The player chooses two numbers between 1 and 90 and pays 14 gros to
play. If both the chosen numbers are among the 5 numbers drawn, the
player wins 120 écus.

terno The player chooses three numbers between 1 and 90 and pays 15 deniers
to play. If all three of the chosen numbers are among the 5 numbers drawn,
the player wins 180 écus.

The écu was a French silver coin, worth 3 francs. It was divided into 24 gros,
which were in turn each divided into 12 copper deniers. Thus 1 écu = 24 gros
= 288 deniers and 1 gros = 12 deniers. Subsequently, all fractional parts of
écus will be given as decimals, although Euler did not do this in his report of
September 17.

It was also possible to place mixed bets, but apparently the proposal didn’t
specify the price of such tickets. Frederick’s charge and Euler’s response are
reproduced in Volume IVA.6 of the Opera Omnia [5, pp. 316–320], but unfor-
tunately Roccolini’s proposal is not included.

Euler’s analysis began with a calculation the fair price of each type of ticket,
“according to the law of equality”. In other words, he calculated the expected
value of the payoff in each case. Table 1 summarizes his findings. In 1749, Euler
determined the bank’s profit using the measure

P − E
E

× 100%,

where E is the expected value and P is price of a ticket. In his 1763 paper
“Reflections on . . . the Genoese Lottery”, which we will discuss in the next
section, he uses

P − E
P

× 100%

to measure that bank’s profit.

Type Probability Expected Price of The Bank’s The Bank’s
of bet of a win Prize Value a Ticket Profit (1749) Profit (1763)

simple 5
90 100 5 5/9 8 44% 31%

ambo 5·4
90·89 120 0.2996 0.5833 95% 49%

terno 5·4·3
90·89·88 180 0.01532 0.05208 240% 71%

Table 1: Summary of Euler’s Analysis

3



   

Euler’s analysis continued with a discussion of the fairness of the bank’s
increasing profit margin. It is important to note here a significant difference
between the Genoese lottery and most modern versions of the lottery. The
Genoese lottery (and, for that matter the contemporary Italian Lotto) offers
fixed-odds payoffs. That is, the player knows in advance how large a prize is
at stake, irrespective of the number or distribution of tickets sold. In the long
run, the bank is guaranteed to win, and to win big. However, if the state were
to have a run of bad luck, and a relatively large number of major prizes were to
be awarded in a drawing where relatively few tickets had been sold, the bank
could be broken.

The danger of bankruptcy is avoided in lottery games played today in the
USA and most other countries by adopting a version of the method of pari-
mutuel betting used in horse racing. The term, literally meaning ‘mutual wager’,
comes from two French words. A portion of each wager placed is set aside to
cover the cost of running the lottery and the state’s revenue, and the remainder
is placed in a pool, to be paid out to the winners. In effect, players are betting
against each other, with the state taking a cut of every wager.

In New York State’s Lotto, for example, players choose 6 numbers between
1 and 51. They win a cash prize if 4, 5 or 6 of their chosen numbers match, and
a free ticket in the next lottery if they match 3. Fifty-one cents of every one
dollar ticket goes into a pari-mutuel pool, with a certain portion of that reserved
for the jackpot, paid to players who match all 6 numbers in the draw. If there
is no jackpot winner in a particular drawing, the jackpot rolls over, making the
subsequent drawing even more attractive to players. Reliable estimates on the
size of the jackpot are available before the drawing, but only at the close of
betting is the exact payoff known.

In Euler’s time, the technology needed to deliver the sort of up-to-the-minute
information on ticket sales used in the calculation of pari-mutuel odds was not
available. Therefore Euler noted in his letter to Frederick that it was entirely
proper for the bank to offer relatively smaller payoffs for the riskier ambo and
terno bets in order to insulate itself from calamity. He also observes that if the
total number of bets is small, it would be undesirable to have many players
choosing the same ambo or terno bets, although it’s not clear what sort of
practical bookkeeping procedures might have been instituted at that time to
avoid these multiple bets.

We note that although Roccolini’s proposal did not allow for a gambler to bet
on all 5 numbers in the drawing, this sort of bet was permitted in other Genoese-
style lotteries of the 18th century, including the lottery that was eventually
instituted in Berlin in 1763. In fact, it was even possible in the French Royal
lottery to bet on all five numbers and the order in which they were drawn. The
payoff, at a million to one, made this game irresistibly attractive to the French
populace, particularly the lower classes, despite the fact that the true odds are
in excess of five billion to one. “There were occasions when mathematicians
wrote learned articles demonstrating why people should not play the lottery
at those odds,” writes Katz [4, p. 598] in describing the French lottery, “but
the only mathematicians to whom people paid attention were those who sold
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sure-fire methods for picking the winning numbers!”
Euler neither wrote cautionary epistles, nor did he hawk sure-fire winning

strategies. Instead, the Genoese lottery inspired in him a series of mathematical
articles concerning some of the trickier questions of combinatorics and probabil-
ity theory to be tackled in the 18th century. The first glimmer of these deeper
thoughts is his observation, towards the end of letter of September 17, that
there is nothing sacred about the numbers 5 and 90; the Genoese lottery may
be abstracted to any number n of numbered balls or tickets in the urn, and any
number t < n of such tokens chosen in the drawing. He closes by outlining for
Frederick an alternate lottery scheme, involving n = 100, t = 10, where players
bet on 1, 2, 3 or 4 numbers.

3 Reflections on a Singular Lottery

That the Genoese lottery captured Euler’s mathematical imagination is evi-
denced by the entries he made in his notebook, known today as H5, which he
probably filled between 1748 and 1750 [2, p. xxiv]. His first published article on
the lottery did not appear until 1767. However, the Genoese lottery was only
established in Berlin in 1763, and on March 10 of the same year, Euler delivered
an address entitled “Reflections on a Singular Type of Lottery called the Ge-
noese Lottery” [6] to the Berlin Academy. The text of the address was finally
published in 1862, in Euler’s Opera Posthuma I. The posthumous publication
is reflected in the paper’s relatively high number in the Eneström system for
numbering Euler’s works: E812.

Unlike Euler’s later papers on the Genoese lottery, which are works of pure
mathematics that set out to answer questions inspired by the lottery of little
or no practical value, E812 is a work of applied mathematics. Euler proves
little new mathematics, but instead applies elements of probability theory, in-
terspersed with dashes of common sense and vaguely justified rules of thumb,
in describing how one might go about designing a Genoese style lottery, de-
termining, in particular, fair prize levels. This represents a shift in focus from
Roccolini’s proposal, where prizes were of a fixed value, and Euler determined
the fair price of a ticket, comparing these to Roccolini’s prices.

Euler’s goal in the first portion of the paper is to calculate the probability
pk,i that a player who bets on k numbers will in fact match i of them. The values
depend on the parameters n and t, where the lottery consists of choosing t tokens
at random from a collection numbered 1, 2, 3, . . . , n. A modern probability text
would say that i has hypergeometric distribution, with parameters n, t and k,
and thus

pk,i =

(
t
i

)(
n− t
k − i

)
(
n
k

) .

However, the hypergeometric distribution, the distribution of sampling without
replacement, was not yet recognized as a standard random variable in Euler’s
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time. Euler’s analysis may indeed be one of the first treatments of this disti-
bution in print. He did not give the pk,i’s as above; in fact, he had not yet
even developed a convenient notation for binomial coefficients (see section 5).
Instead, Euler gave the pk,i in a form that was well-suited for efficient recursive
calculation.

Euler gives a complete derivation of the desired probabilities. The method of
proof – an implicit or ‘socratic’ induction – is a common one in Euler’s writings:
he solves the simplest cases in order, clearly and persuasively argued, until the
pattern is clear to the reader. The “Reflections” paper is divided into sections
which Euler calls Problems, some with corollaries or scholia. He considers the
distribution of i in the case k = 1 in Problem 1, and then proceeds through the
next three values of k in Problems 2-4. We summarize these in Table 2, where
the kth column represents the results of the corresponding Problem.

pk,i k = 1 k = 2 k = 3 k = 4

i = 0 n−t
n

(n−t)(n−t−1)
n(n−1)

(n−t)(n−t−1)(n−t−2)
n(n−1)(n−2)

(n−t)(n−t−1)(n−t−2)(n−t−3)
n(n−1)(n−2)(n−3)

i = 1 t
n

2t(n−t)
n(n−1)

3t(n−t)(n−t−1)
n(n−1)(n−2)

4t(n−t)(n−t−1)(n−t−2)
n(n−1)(n−2)(n−3)

i = 2 t(t−1)
n(n−1)

3t(t−1)(n−t)
n(n−1)(n−2)

6t(t−1)(n−t)(n−t−1)
n(n−1)(n−2)(n−3)

i = 3 t(t−1)(t−2)
n(n−1)(n−2)

4t(t−1)(t−2)(n−t)
n(n−1)(n−2)(n−3)

i = 4 t(t−1)(t−2)(t−3)
n(n−1)(n−2)(n−3)

Table 2: Summary of Problems 1-4

Euler’s reasoning is entirely elementary, and each Problem builds on the
results of the previous one. Elements of the pattern come into focus quickly,
particularly the presence of binomial coefficients. The details of Euler’s solutions
of Problems 1-4 further underline this identification, as the coefficient of every
entry in each column, except the first and last, arises a sum of two coefficients
in the previous column, thereby obeying precisely the same recursive formula
as the entries in Pascal’s triangle. Thus, we may express

pk,i =
(
k
i

)
sk,i.

In Problem 5, Euler asks for the general form of pk,i. He introduces r = n−t
and writes out the cases k = 1, 2, . . . , 6 in a new notation. Then sk,i is seen to
be:

t(t− 1) · · · (t− i+ 1)r(r − 1) · · · (r − (k − i) + 1)
n(n− 1)(n− 2) · · · (n− k + 1)

,

where 0 ≤ i ≤ k, 1 ≤ k ≤ t ≤ n, and k ≤ r = n− t.

6



    

Euler does not use this notation, nor does he explicitly give a formula for
the general value of sk,i. His notation is as follows:

Ai = s1,i

Bi = s2,i

Ci = s3,i

Di = s4,i

etc.

In Corollary 1, Euler observes that the sk,i can be given recursively. We
may give an explicit formulation as follows. Define s0,0 = 1; then for k ≥ 1, and
0 ≤ i < k:

sk,i =
r − (k − i) + 1
n− k + 1

sk−1,i.

Also,

sk,k =
t− k + 1
n− k + 1

sk−1,k−1.

In Euler’s notation, these formulas are given as follows:

B2 =
t− 1
n− 1

A1, B1 =
r

n− 1
A1, B0 =

r − 1
n− 1

A0;

C3 =
t− 2
n− 2

B2, C2 =
r

n− 2
B2, C1 =

r − 1
n− 2

B1, C0 =
r − 2
n− 2

B0;

D4 =
t− 3
n− 3

C3, D3 =
r

n− 3
C3, D2 =

r − 1
n− 3

C2, D1 =
r − 2
n− 3

C1, D0 =
r − 3
n− 3

C0;

etc.

In Problem 6, Euler turns his attention to finding the fair prize for a wager
one écu. In this discussion, it is clear that Euler is considering a more elaborate
lottery scheme than Roccolini’s where, for example, a gambler playing terno
must match all three of his k = 3 selections. In the “Reflections” paper, Euler
will award a prize Fk,i if i of the players’ k numbers match the t numbers drawn,
for any 0 < i ≤ k.

To do this, Euler simply chooses k positive numbers satisfying αk,1 +αk,2 +
· · ·+ αk,k = 1, and award prizes

Fk,i =
αk,i
pk,i

.

Then the expected payoff for a ticket costing one écu is

k∑
i=1

pk,iFk,i =
k∑
i=1

αk,i = 1.

Absent a notation uniform in k, the discussion of this simple point is sur-
prisingly tedious, and is handled one case at a time, ending at k = 5. “It’s
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not likely that we’d need to consider more than 5 numbers,” Euler says, “as
the prizes would be too exorbitant”. Of course, it’s precisely these ‘exorbitant’
prizes that make so many contemporary lotteries so very irresistible.

The αk,is are not uniquely determined, unless k = 1. So for k > 1, Euler
discusses three possible weighting schemes:

1. uniform weights

αk,i =
1
k

2. binomial weights

αk,i =

(
k
i

)
2k − 1

3. modified binomial weights

αk,i =
(k − i+ 1)

(
k
i

)
Mk

where Mk =
k∑
i=1

(k − i+ 1)
(
k
i

)

Euler motivates methods 2 and 3 as progressively minimizing the impact of
large prizes, corresponding to large values of i, on the bank. Curiously, he gives
neither formulas nor even explanations for these weights, but simply tabulates
the coefficients up to the case k = 5. I am grateful to Prof. Stephen Bloch of
my department for help in solving the riddle of how the coefficients in method
3 were arrived at.

To illustrate these methods, let us compare in Table 3 the values of α5,i in
the three case.

Method i = 1 i = 2 i = 3 i = 4 i = 5

1 1
5

1
5

1
5

1
5

1
5

2 5
31

10
31

10
31

5
31

1
31

3 25
106

40
106

30
106

10
106

1
106

Table 3: coefficients for k = 5

The question Euler examines in Problem 7 is that of determining a fair rate of
return for the bank. Euler mentions that the lottery must hold back something
in order to cover its expenses, and observes that if the lottery is being used to
finance important state needs, then further discounts on the prizes above and
beyond what he recommends may be needed. He suggests that on prizes with
only one number matched, the bank should hold back be no more than 10%
of the revenue, as a greater discount “would be too obvious and disgust the
participants”. Thus, 90% of Fk,1 should be returned to the gambler for each k.
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On the other hand, larger profit margins for larger values of i are both
justified by the risk, and “will hardly be noticed, given that few people are in
a position to calculate the fair value.” Accordingly, he suggests returning 80%,
70%, 60% and 50% of Fk,i to the player when i = 2, 3, 4 and 5, respectively.
These profit margins of 10%, 20%, and so on, are far more modest than the
31%, 49% and 71% margins spelled out in Roccolini’s proposal (see the final
column of Table 1).

As with Problem 6, Euler’s recommendations in Problem 7 do not have the
force of mathematical proof behind them; they amount to little more than the
recommendations and educated guesses of a respected scholar.

All that remains for Euler is to plug in values of n and t, and to calculate the
size of the prizes under each of the three methods. In Problem 8 he does this
in the canonical case of n = 90 and t = 5. Table 4 contains these recommended
prizes.

In Problem 9, he uses the values n = 100 and t = 9, curiously close to the
case n = 100 and t = 10 which he outlined for Frederick in 1749. Once again,
he calculates the prize money under all 3 methods for each value of k ≤ 5.

k i Method 1 Method 2 Method 3

1 1 16 16 16

2 2 160 106 64

1 4 5 1
2 6 1

2

3 3 2,741 1,174 513

2 36 47 41

1 2 2 1
2 3 1

3

4 4 76,655 20,441 7,130

3 526 561 391

2 14 22 1
2 24

1 1 1 1
4 1 3

4

5 5 4,394,927 708,859 207,307

4 12,409 10,007 5,853

3 172 278 243

2 7 11 1
2 13 1

2

1 3
4

1
2 1

Table 4: Prizes for the canonical lottery
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4 The Probability of Sequences

Euler’s paper “On the Probability of Sequences in the Genoese Lottery” [7] was
read to the Berlin Academy of Sciences in 1765 and published in the Mémoires
of the academy two years later. In this memoir, Euler considers the probability
that sequences, or runs of consecutive numbers, will appear among the numbers
drawn in a Genoese style lottery. If, for example, the numbers 7, 8, 25, 26 and 27
are drawn, 7 and 8 constitute a sequence of two whereas 25, 26 and 27 constitute
a sequence of three. It was not possible to bet on the occurrence of sequences in
the Berlin lottery, so we must assume that this is simply a mathematical puzzle
which Euler found appealing and worthy of his attention.

The structure of this paper, numbered 338 by Eneström, is similar to E812.
A socratic induction is built up by solving increasingly complex cases. In Prob-
lems 1-4, Euler considers the probability of occurrence of the various patterns
of sequences when t = 2, 3, 4 and 5, where n and t are as above. Although
the cases t = 2 and 3 are relatively straightforward, it takes Euler almost 22
pages to complete all four Problems, by which time he has solved the case of
the Genoese lottery.

In order even to state the results, we need further notation and the idea of a
species. Euler denotes a sequence of i consecutive numbers by the shorthand (i).
If the numbers 7, 8, 25, 26, 27 are drawn, then he says the drawing has a species
of (3) + (2), as there is one sequences of 3 and one sequence of 2. If t = 8, then
a drawing of 2, 3, 21, 22, 23, 57, 85, 86 has a species of 1(3) + 2(2) + 1(1), since it
has a sequence of 3, two sequences of 2 and one sequence of 1. In Table 5, we
summarize results on the distribution of various species when t = 5 in both the
general case and the canonical case n = 90.

Probability, Probability,
Species General Case Genoese Lottery

(5) 2·3·4·5
n(n−1)(n−2)(n−3)

1
511038

(4) + (1) 2 · 3·4·5(n−5)
n(n−1)(n−2)(n−3)

85
511038

(3) + (2) 2 · 3·4·5(n−5)
n(n−1)(n−2)(n−3)

85
511038

(3) + 2(1) 3 · 4·5(n−5)(n−6)
n(n−1)(n−2)(n−3)

3570
511038

2(2) + (1) 3 · 4·5(n−5)(n−6)
n(n−1)(n−2)(n−3)

3570
511038

(2) + 3(1) 4 · 5(n−5)(n−6)(n−7)
n(n−1)(n−2)(n−3)

98770
511038

5(1) (n−5)(n−6)(n−7)(n−8)
n(n−1)(n−2)(n−3)

404957
511038

Table 5: Distribution of species, t = 5
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Over the course of 11 subsequent pages, Euler handles all 11 cases associated
with t = 6. He then considers himself poised to state the solution to the general
problem.

Given an arbitrary t, let the species σ of a draw be denoted

α1(l1) + α2(l2) + · · ·+ αm(lm).

Then necessarily
m∑
j=1

αj lj = t.

In addition, let

k =
m∑
j=1

αj .

Then the number of drawings which result in a species of σ is

(n− t+ 1)(n− t)(n− t− 1) . . . (n− t− k + 2)∏m
j=1 αj !

All desired probabilities can be then be calculated by dividing this quantity by
the total number of possible drawings, which is simply(

n
t

)
.

To completely solve the problem for a given t, then, one needs an exhaustive
list of the various species, or partitions, associated with a natural number t.
The partition function p(t), which gives the the number of such partitions, is an
essential component of a modern course in number theory. Euler lists the first
15 values of p(t) in a corollary to the general result: 1, 2, 3, 5, 7, 11, 15, 22, 30,
42, 56, 77, 101, 135, and 176.

The partition function was studied extensively by Euler. He wrote papers
on it in 1741 [8], 1750 [9] and 1769 [10]. In addition, he devoted a chapter of
the first volume of his textbook Introductio in analysin infinitorum, published
in 1748, to the study of p(t). It is quite reasonable to speculate that it was
this application in 1765 to probability theory that prompted Euler to revisit the
subject of partitions shortly after his return to St. Petersburg in 1766.

5 Other Results

After his return to St. Petersburg, Euler wrote two more memoirs concerning
matters of probability theory arising from the Genoese lottery. Both of these
papers, numbered E600 [11] and E813 [12], concerned the number of distinct
integers between 1 and n which would be drawn over the course of many repe-
titions of the lottery.
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The first of these papers, “On the Solution of Difficult Questions in the
Calculus of Probability” was presented to the Academy of St. Petersburg on
October 8, 1781 and published posthumously in 1785. Euler begins with the
observation that it would be convenient to have a special symbol for the binomial
coefficient, and so he defines:(

p

q

)
=
p(p− 1) · · · (p− q + 1)

q!
.

Actually, Euler used square brackets in place of the parentheses in the origi-
nal published version of this paper, but in a variety of roughly contemporary
papers, he used the above notation, and so the editors use the above notation
consistently throughout the Opera Omnia.

The organization of this paper is different from the previous papers on the
lottery. Euler begins by posing his Problems and providing the solutions im-
mediately without proof. All proofs are presented in the second half of the
paper.

The first major question is to determine the probability that, after d repe-
titions of a Genoese style lottery, all of the numbers from 1 to n will have been
drawn at least once. Let t once again denote the number of tokens removed in
a single drawing, and suppose that td ≥ n so that it is possible that all n tokens
have been drawn. The size of the sample space is then

∆ =
(
n
t

)d
.

If we fix a subset of size k of the n numbers, then there are(
n− k
t

)d
ways in which the d drawings might occur, such that none of these k numbers

appear. As there are
(
n
k

)
such subsets of size k, let

Ek =
(
n
k

)(
n− k
t

)d
Then Ek is the number of ways in which n− k or fewer distinct numbers may
be chosen in the d drawings.

We note that a given two-element set {i, j} will be counted twice in the
consideration of E1: once when we count the number of ways the drawings
which exclude i may take place, and again when we consider the drawings that
exclude j. Thus ∆−E1 undercounts the number of ways to choose all n tokens
over the course of d drawings. To compensate for the two-element sets, a better
approximation is ∆−E1 +E2, but this overcounts the number of 3-element sets.
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Clearly, this is a classic counting problem, familiar in the study of combina-
torics, and the number of ways of drawing all n tokens is

Σ0 = ∆− E1 + E2 − E3 + E4 − · · · ,

where the alternating sum continues until Er, where n− r = t. The probability
that all n tokens are drawn is then

Σ0

∆
= 1− E1

∆
+
E2

∆
− E3

∆
+
E4

∆
− . . . .

As an application, Euler considers the canonical case of the Genoese Lottery,
with d = 100 drawings. Since E5/∆ = 0 to 4 decimal places, Euler needs only
the first five terms of the alternating sum. The probability that all 90 numbers
are chosen over the course of 100 drawings is 0.7410, although he reports it as
0.7411 due to round-off error. If d = 200, then the probability is 0.9990.

Having considered the number of ways in which all n numbers may be drawn
in Problem 1, Euler considers the number of ways in which n − 1 or n − 2 of
them may be drawn in Problems 2 and 3. With these 3 cases as the basis for
his socratic induction, he states the general result: the number of ways in which
the drawings can be held so that all but λ of the tickets are eventually drawn is

Σλ = ∆−
∑
k=1

(−1)k
(
λ+ k − 1

λ

)
Eλ+k.

To calculate the corresponding probability, we need only calculate Σλ/∆.
The paper E813, entitled “Analysis of a Problem in the Calculus of Proba-

bility,” was published in 1862. According to du Pasquier, the date of its com-
position is not known. Although it is discussed by du Pasquier after the paper
E600 [2, p. xxvi], there appears to be no reason to assume that the papers
were written in that order. It is shorter than the other other three papers we
have considered, and reads more tersely when compared with the lucid technical
prose of E812, E338 and E600. Perhaps it was a preliminary draft that Euler
never managed to put into final form.

Consider the same situation of d repeated drawings where dt ≤ n in this case.
Then the number of distinct tokens drawn over the course of all the drawings
is a discrete random variable U taking integer values between t and dt. Euler
showas that the probability that U takes a value u in its range is

Au(n− t)(n− t− 1) · · · (n− u+ 1)
[n(n− 1) · · · (n− t+ 1)]d−1

for certain integer coefficients At, At+1, . . . Adt. Here, the numerator is under-
stood to be simply At when u = t.

The coefficients At, At+1, . . . Adt are not given in a closed form, but rather
as the result of solving a polynomial equation of degree (d− 1)t in n. Perhaps
Euler found this state of affairs to be somewhat unsatisfactory, and that this
explains why he did not make it a priority to publish this paper.
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6 Conclusion

Euler wrote four papers on the Genoese lottery, as well as a fifth one [13] on
an entirely different type of lottery. The lottery described in this fifth paper
was also one proposed to Frederick II, this time by a Dutchman named van
Griethouse. There was a correspondence between Frederick and Euler in 1763
concerning this lottery proposal, quite similar to the one of 1749. This lottery
was of the old style, as originally played in Venice and Florence, but with a new
twist. Each player purchased not a single ticket, but a subscription to the same
number in a series of repeated drawings. There is also a passing reference to
this lottery in one of the applications contained in the paper E813.

All in all, Euler’s writings on lotteries comprise but a tiny fraction of his
total mathematical output. As Todhunter suggests in the opening quote, they
may also be dismissed as being of little importance, especially when compared
to his towering contributions to such fields as analysis and number theory.

This little backwater in Euler’s great output begins with two simple requests
for assistance from his royal patron. His duty was discharged in each case with
the production of a short report for the king. Yet both problems stayed with
him over the years, and apparently tickled a small fancy somewhere in his vast
mathematical imagination. Therefore, this study may also serve to illuminate
two admirable virtues of Euler’s character: his sense of duty and devotion, and
his ability to delight in mathematical recreation.
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[10] Euler, Leonard, “De partitione numerorum in partes tam numero quam
specie datas,” p. 131, in Leonhardi Euleri Opera Omnia, vol. I.3,
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