nlme.nlsList(object, fixed, random = fixed, cluster, data=sys.parent(),
start, est.method=c("ML", "RML"), re.block,
re.structure=c("unstructured", "diagonal", "identity",
"compsymm", "ar1"), re.paramtr=c("matrixlog", "cholesky",
"spherical", "logcholesky", "givens"),
serial.structure=c("identity", "ar1", "ar1.continuous",
"compsymm", "ar2", "ma1", "ma2", , serial.covariate=NULL,
serial.covariate.transformation=c("rank.within.cluster",
"none", "round", "global.rank"), var.function=c("identity",
"power", "expon", "cte.power", "cte.expon"),
var.covariate=NULL, var.estimate=T, control, na.action,
na.pattern, verbose=F)
Theo.nlsList <- nlsList(conc ~ first.order.log(Dose, time, lCl, lka,
lke), data = Theoph, cluster = ~ Subject)
Theo.nlsList.fit <- nlme(Theo.nlsList)
Theo.nlsList.fit
# Returns the following:
Call:
Model: conc ~ first.order.log(Dose, time, lCl, lka, lke)
Fixed: list(lCl ~ ., lka ~ ., lke ~ .)
Random: list(lCl ~ ., lka ~ ., lke ~ .)
Cluster: ~ Subject
Data: Theoph
Variance/Covariance Components Estimate(s):
Structure: matrixlog
Standard Deviation(s) of Random Effect(s)
lCl lka lke
0.2510528 0.6364656 0.1309519
Correlation of Random Effects
lCl lka
lka -0.08624075
lke 0.99477586 0.015542499
Cluster Residual Variance: 0.4650816
Fixed Effects Estimate(s):
lCl lka lke
-3.214444 0.4512505 -2.432664
Number of Observations: 132
Number of Clusters: 12