nlme.nlsList(object, fixed, random = fixed, cluster, data=sys.parent(), start, est.method=c("ML", "RML"), re.block, re.structure=c("unstructured", "diagonal", "identity", "compsymm", "ar1"), re.paramtr=c("matrixlog", "cholesky", "spherical", "logcholesky", "givens"), serial.structure=c("identity", "ar1", "ar1.continuous", "compsymm", "ar2", "ma1", "ma2", , serial.covariate=NULL, serial.covariate.transformation=c("rank.within.cluster", "none", "round", "global.rank"), var.function=c("identity", "power", "expon", "cte.power", "cte.expon"), var.covariate=NULL, var.estimate=T, control, na.action, na.pattern, verbose=F)
Theo.nlsList <- nlsList(conc ~ first.order.log(Dose, time, lCl, lka, lke), data = Theoph, cluster = ~ Subject)Theo.nlsList.fit <- nlme(Theo.nlsList)
Theo.nlsList.fit
# Returns the following: Call: Model: conc ~ first.order.log(Dose, time, lCl, lka, lke) Fixed: list(lCl ~ ., lka ~ ., lke ~ .) Random: list(lCl ~ ., lka ~ ., lke ~ .) Cluster: ~ Subject Data: Theoph
Variance/Covariance Components Estimate(s):
Structure: matrixlog Standard Deviation(s) of Random Effect(s) lCl lka lke 0.2510528 0.6364656 0.1309519 Correlation of Random Effects lCl lka lka -0.08624075 lke 0.99477586 0.015542499
Cluster Residual Variance: 0.4650816
Fixed Effects Estimate(s): lCl lka lke -3.214444 0.4512505 -2.432664
Number of Observations: 132 Number of Clusters: 12