Fit a Nonlinear Mixed Effects Model

DESCRIPTION:
A method for the generic function nlme() for objects inheriting from class nlsList.

USAGE:
nlme.nlsList(object, fixed, random = fixed, cluster, data=sys.parent(),
             start, est.method=c("ML", "RML"), re.block,
             re.structure=c("unstructured", "diagonal", "identity",
             "compsymm", "ar1"), re.paramtr=c("matrixlog", "cholesky",
             "spherical", "logcholesky", "givens"),
             serial.structure=c("identity", "ar1", "ar1.continuous",
             "compsymm", "ar2", "ma1", "ma2", , serial.covariate=NULL,
             serial.covariate.transformation=c("rank.within.cluster",
             "none", "round", "global.rank"), var.function=c("identity",
             "power", "expon", "cte.power", "cte.expon"),
             var.covariate=NULL, var.estimate=T, control, na.action,
             na.pattern, verbose=F)

REQUIRED ARGUMENTS:
object:
an object inheriting from class nlsList.

OPTIONAL ARGUMENTS:
fixed:
cluster:
data:
start:
these arguments, though included in the calling sequence to be consistent with the generic function call, should not be supplied in the call to nlme.nlsList() as they are obtained from object. Initial values given to these arguments will be overwritten with those obtained from object.
others:
see the documentation on nlme.formula.

VALUE:
an object of class nlme representing the fit. Generic functions such as print, plot, predict, and summary have methods to show the results of the fit. See nlme.object for the components of the fit. The functions residuals, coefficients and fitted.values can be used to extract some of its components.

SEE ALSO:
nlsList , nlme.formula , nlme.control , nlme.object .

EXAMPLES:
Theo.nlsList <- nlsList(conc ~ first.order.log(Dose, time, lCl, lka,
                          lke), data = Theoph, cluster = ~ Subject)

Theo.nlsList.fit <- nlme(Theo.nlsList)

Theo.nlsList.fit

# Returns the following: Call: Model: conc ~ first.order.log(Dose, time, lCl, lka, lke) Fixed: list(lCl ~ ., lka ~ ., lke ~ .) Random: list(lCl ~ ., lka ~ ., lke ~ .) Cluster: ~ Subject Data: Theoph

Variance/Covariance Components Estimate(s):

Structure: matrixlog Standard Deviation(s) of Random Effect(s) lCl lka lke 0.2510528 0.6364656 0.1309519 Correlation of Random Effects lCl lka lka -0.08624075 lke 0.99477586 0.015542499

Cluster Residual Variance: 0.4650816

Fixed Effects Estimate(s): lCl lka lke -3.214444 0.4512505 -2.432664

Number of Observations: 132 Number of Clusters: 12