ms(formula, data = <<see below>>, start = <<see below>>, control = <<see below>>, trace = F)
lprob <- function(lp)log(1+ exp(lp)) - lp # log-likelihood fit.alpha <- ms(~ lprob(D * alpha), pingpong)lprob2 <- function(lp, X) { # lp is the linear predictor, X is data in the linear predictor elp <- exp(lp) z <- 1 + elp value <- log(z) - lp attr(value, "gradient") <- - X/z value } fit.alpha.2 <- ms(~ lprob2(D * alpha, D), pingpong)