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AN ELEMENTARY PROOF OF FARKAS’ LEMMA*

ACHIYA DAXT

Abstract. Farkas’ lemma is one of the key results in optimization. Yet, it is not a trivial
conclusion, and its proof contains certain difficulties. In this note we propose a new proof which is
based on elementary arguments.
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Farkas’ lemma is a classical result, first published in 1902. It belongs to a class
of statements called “theorems of the alternative,” which characterizes the optimality
conditions of several problems. A proof of Farkas’ lemma can be found in almost
any optimization textbook. See, for example, [1-11]. Early proofs of this observation
are rather formal and don’t make clear why the theorem works; see, e.g., [5, p. 44].
Recent proofs are usually based on projection (separation) theorems. This approach
has a simple geometrical interpretation and is far more intuitive. Nevertheless, Farkas’
lemma is still considered a “pedagogical annoyance” because some parts of it are easy
to verify while the main result cannot be proved in an elementary way. For example,
see [6, p. 295]. In this note we attempt to overcome this difficulty by presenting a
simple self-contained proof which is based on elementary arguments.

Let A be a real m x n matrix and let ¢ be a real nonzero n-vector. Then Farkas’
lemma says that either the primal system

(1) Ax>0 and c'x<0
has a solution x € R™ or the dual system
(2) ATy =c and y>0

has a solution y € R™, but never both. Note that c”x < 0 implies x # 0, while
ATy = ¢ means y # 0. (The dimension of the null vector, 0, depends on the
context.) If both (1) and (2) hold then the inequality

cI'x=(ATy)'x=y"Ax >0
contradicts ¢/x < 0. Hence, it is not possible that both systems are solvable.

The question of which of the two systems is solvable is answered by considering the
bounded least squares problem

(3a) minimize ||[ATy — c||?

(3b) subject to y > 0,

where || || denotes the Euclidean norm. Let y* be a given point in R™, and let
(4) r'=ATy" —¢
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denote the corresponding residual vector. Then, by Lemma 2 below, y* solves (3) if
and only if y* and r* satisfy the conditions

(5) y*>0, Ar*>0, and (y*)'Ar*=0.

These conditions will be used later to establish the existence of a point y* € R™ that
solves (3). Combining (4) and (5) gives

<t = (ATy" —r)Tr" = (y) T Ar" - ()T = |7,

which leads to the following conclusion.
THEOREM 1. Let y* solve (3) and let v* = ATy* — c denote the corresponding
residual vector. If r* = 0 then y* solves (2). Otherwise, r* solves (1) and cTr* =

LEMMA 2. Let y* = (yi,...,y5)T be a given point in R™ and let v* be defined
by (4). Then y* solves (3) if and only if y* and r* satisfy (5).

Proof. Assume that y* solves (3) and consider the one-parameter quadratic func-
tions

fi(6) = HAT(y* + fe;) —cH2 = ||0a; +r*||2, i=1,....,m,

where al” denotes the ith row of A, 6 is a real variable, and e; denotes the ith column
of the m X m unit matrix. Then, clearly, § = 0 solves the problem

minimize f;(6)
subject to y +0 > 0.

Therefore, since f/(0) = Qa?r*,

Ty* =0, while y; =0 implies a’r* >0,

y; > 0 implies a

which constitutes (5).

Conversely, assume that (5) holds and let z be an arbitrary point in R™ such that
z > 0. Let the m-vector u = (uy,...,um,)" be obtained from z by the rule u = z—y*.
Then y; = 0 implies u; > 0, while (5) leads to

ul Ar* > 0.
Hence, the identity
1472 — cf2 = [|ATy" — c|[? + 2u” Ax* + || ATu]?
shows that
|ATz —c|* > ||ATy* —¢|®>. O

It is left to establish the existence of a point y* that solves (3). This aim is
achieved by introducing a simple iterative algorithm whose kth iteration, k = 1,2, ...,
consists of the following two steps.

Step 1: Solving an unconstrained least squares problem. Let y, = (y1,...,ym)? >
0 denote the current estimate of the solution at the beginning of the kth iteration.
Define

re =Aly,—¢c, Vi={i| vi=0}, and Wy =/{i| y >0}.
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The number of indices in Wy, is denoted by ¢. If t = 0 or ry, = 0 then skip to Step 2.

Let Aj be the t x n matrix whose rows are aZT, i € Wy. The order of the rows does

not matter. Hence, it is assumed for simplicity that
Al =T[ay,...,a), Wip={1,...,t}, and Vi={t+1,...,m}.
Let the t-vector wy, = (w1, ... ,wt)T solve the unconstrained least squares problem
minimize ||A7w — ry||%.

Observe that 0 solves this problem if and only if Agry = 0. In this case, skip to
Step 2. Otherwise, define a nonzero search direction uy, = (uy,...,u,)’ € R™ by the
following rule:

u; =w; for i=1,...,t and u; =0 for i=¢t+1,...,m.
Then the next point is defined as
Yis1 = Yi + Okug,

where 6 > 0 is the largest number in the interval [0, 1] that keeps the point y, + uy
feasible. In other words, 6}, is the smallest number in the set {1} U{—y;/u; | u; < 0}.

Step 2: Testing optimality and moving away from a dead point. Here Agry = 0,
which means that y, solves the problem

(6a) minimize ||ATy — ¢||?
(6b) subject to y; =0 for i€ V;
(6¢) and y; >0 for i € Wy.

In this case, y, is called a “dead point.” To test whether or not y, is optimal, we
compute an index j such that

aJTrk =min{alry | i€ Vi}.

If al'r; > 0 then y, and ry, satisfy (5). Therefore, by Lemma 2, y,, solves (3) and the
algorithm terminates. Otherwise, the next point is defined as

Yi+1 = Y — (agrrk:/ajTaj)ej?

where e; denotes the jth column of the m x m unit matrix. Note that —a;‘»rrk /a;raj >
0, and this point solves the problem

minimize f(0) = ||A” (y, + 0e;) — c||?.

The finite termination of the above algorithm is a consequence of the following
properties:
(a) The objective function is strictly decreasing at each iteration, that is,

14Ty, =l > |4y )0 — el

(b) If 6, = 1 then y,_, is a dead point. Otherwise, when 0 < 0, < 1, t de-
creases. Hence, it is not possible to perform more than m iterations without reaching a
dead point.
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(c) Each time we reach a dead point, the current point solves (6).

(d) There is a finite number of such problems. Yet, because of (a), it is not
possible to “visit” the same problem twice.

It is interesting to compare the new proof with other approaches. A traditional
way for proving the existence of a point y* which solves (3) is based on the observation
that

Z={A"y| y>0}

is a closed set of R™. However, contrary to the impression that a hasty analysis
might leave, proving this assertion indeed requires elaboration. See, for example, [1,
pp- 332-334] or [9, p. 10]. Using the closure of Z, we obtain that

B={z| z€Z and ||z—cl|| <||c||}

is a nonempty closed bounded set of R". Note also that ¢(x) = [|x —c]||? is a
continuous function of x. Therefore, by the well-known Weirestrass’ theorem, ¢(x)
achieves its minimum over B. Let z* € B denote the minimizing point. Since B C Z,
there exists a point y* € R™ such that y* > 0 and z* = ATy*; therefore, y* solves
(3).

The point z* = ATy* is the projection of ¢ on Z. Since Z is a convex set and ¢(x)
is a strictly convex function, z* is unique. However, y* is not necessarily unique. It
is also worthwhile mentioning a relatively less well known feature of r*, due to Powell
[10].

COROLLARY 3. Lety* and r* be as in Theorem 1 and assume that r* # 0. Then
the vector v* /||r*|| solves the steepest descent problem

(7a) minimize c¢’x
(7b) subject to Ax > 0 and ||x|| = 1.

Proof. Let x satisfy the constraints (7b). Then
(v)T Ax > 0,
while the Cauchy—Schwartz inequality gives
(") T < (||| - [l = [|e])-
Combining these relations shows that
¢"x = (ATy" — ") Tx = (y*) Ax — (1) x = —(r*)"x > —|(c*) x| = —[}r"].

Therefore, since ¢Tr*/||r*|| = —||r*||, the claim is proved. |

Concluding remarks. A common way of proving Farkas’ lemma is to apply
the separating hyperplane theorem with projection of ¢ on Z. See, for example, [1, 4,
6, 8, 9, 10, 11]. This approach requires establishing both the separating hyperplane
theorem and the closure of Z. In our proof, Theorem 1 replaces the separating
hyperplane theorem, while y* is obtained via a typical “active set” method.

Other theorems of the alternative are also related to bounded least squares prob-
lems and steepest descent directions. Hence, a similar method of proof can be used to
establish the other theorems. The ability to compute the steepest descent direction
provides an effective way for resolving degeneracy in certain active set methods. The
reader is referred to [2] for a detailed discussion of these issues.
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