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_NOTES_ 

Do You Know Your Relative Driving Speed? 
MARK F. SCHILLING 

California State University at Northridge 
Northridge, CA 91330 

mark.schilling@csun.edu 

Drivers on a busy highway or freeway typically select a driving speed based not only 
on the posted speed limit, but also on the velocities of nearby vehicles. Many drivers 

attempt to stay at or near the "flow of traffic," while others prefer to go a bit faster or 

slower. Traffic safety engineers have stated that the safest speed to travel on a busy 

freeway is at the 85th percentile of traffic speeds. A natural question arises: How can 

individuals gauge their speed percentiles from observing traffic in the vicinity? 
In this note, I utilize a simple idealized model for traffic flow: Assume that each 

vehicle travels at a constant speed and that the locations of vehicles and their speeds 
are described by what is called a marked Poisson process. This means that vehicles 

are randomly spaced along the highway, and that their speeds are independent of their 

locations and of all other vehicles' speeds and locations. Assume also that the distri 

bution of traffic speeds (the "marks") has density function f(x), defined for speeds 
x > 0, continuous and positive on its support and not changing over time. That is, the 

number of vehicles per mile of road traveling between speeds x and x + Ax is ap 

proximately proportional to f(x) Ax, when Ax is small. For example, if f(x) is the 

uniform density on some interval [a, b], then we expect an equal number of vehicles 

traveling at each speed between a and b. 

The na?ve estimate of one's percentile rank in the distribution of speeds on the high 

way is simply the observed proportion of vehicles passed out of the total number that 

one passes or is passed by. In particular, if the number of vehicles passing is equal to 

the number of vehicles being passed, then a driver might conclude that (s)he is driving 
at the median speed. Clevenson, Schilling, Watkins, and Watkins [1] recently showed 

that this is not the case. In actuality, when the number of vehicles passing equals the 

number being passed, the driver is, surprisingly, traveling at the mean speed rather than 

the median. More generally, the driver's speed percentile cannot be obtained merely 

by counting the vehicles passing and being passed. 
This article explores the relationship between the na?ve estimate, based on counting 

vehicles passing or being passed, and the actual speed percentile rank of a driver under 

the assumed model. We show that a driver traveling at a relatively slow or relatively 
fast speed will, (perhaps subconsciously) using the na?ve estimate, judge his or her 

speed to be in a more extreme percentile than is actually the case. For instance, a 

person driving at the 85th percentile may perceive that (s)he is driving in an even 

higher speed percentile. 
To begin, suppose that a particular vehicle V is traveling at speed s. Then the ac 

tual speed percentile of this vehicle's speed under the assumed model is p = F(s) = 

fo /( *) dx, while the driver's observed speed percentile is equal to the proportion of 

passed vehicles out of all other vehicles seen (either passing V or passed by V). Since 

vehicles at speed x will be encountered at a rate proportional to both the number of 
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vehicles at speed x and the absolute difference between x and s, this observed per 
centile will converge over time to 

Pobs 
? f*(s -x) f(x)dx 

/0?? \s -x\f(x)dx 

Since F is an increasing function of s, it has an inverse, which we use to express /?obs 
as a function of p: 

Pobs(p) = Jo {P\F-\p)-x)f(x)dx 

f0??\F-i(p)-x\f(x)dx 
(1) 

For the simplest case, when traffic speeds are uniformly distributed, we obtain from 

(1) that Pobs(p) = 
P2/(2p2 

? 
2/7 + 1). Since p0b?P) is not the identity function, the 

driver's observed percentile does not generally match his or her actual speed percentile. 
In fact, we find that p0bs(p) < p fovO < p < .5 and p0bs(p) > p for .5 < p < \. For 

example, if a car is traveling in the 75th percentile of speeds, then /?0bs(-75) 
= .90, so 

the driver will likely perceive that s(he) is in approximately the 90th speed percentile. 
A car moving in the 75th percentile of speeds will typically pass not three times as 

many vehicles as it is passed by, as one might at first expect, but nine times as many! 

Figure 1 The observed percentile function p0bs(p) f?r several traffic speed density func 
tions 

Figure 1 shows pohs as a function of p for five different traffic speed density func 

tions, which are shown in FIGURE 2 below. These simple models cover a wide va 

riety of possible situations, including traffic speed distributions that are uniform, or 

strongly skewed towards either faster or slower speeds, or in which most drivers travel 

at medium speeds or at extreme speeds (either very fast or very slow). The diagonal 
Pobs = p (dashed line) is shown for reference. Looking at the left half of Figure 1 

(0 < p < 0.5), the curves from left to right correspond to the traffic speed density 
functions f3(x) = 2x, f4(x) = 2 ? 

4\x 
? 

0.5|, f(x) 
? 1 (the uniform distribution), 

f2(x) = 2(1 
? 

x), and f5(x) = 4\x 
? 

0.5|. The relationship between pobs and p is in 
variant with respect to linear transformations of the traffic speed density function, so 
these results apply to any interval of possible speeds, for example [45 mph, 75 mph], 
by simply transforming the density functions in FIGURE 2 appropriately. Density func 
tions with infinite support (such as (0, oo)) show similar results, although their rele 

vance as models for traffic speeds is dubious. 



VOL. 79, NO. 2, APRIL 2006 133 

/iW = l f2(x) 
= 2(l-x) h(x) 

= 2x 

2\ 

0.5 0.5 1 

/4(jc)=2-4|jt-0.5| f5(x)=4\x-0.5\ 

0.5 1 0.5 1 

Figure 2 Traffic density functions used in Figure 1 

We see from Figure 1 that in each instance there is only one speed percentile, say 

p, for which /?obs = P- This is nearly always the case, although exceptions do exist. 

The value of p will be close to 0.5 (corresponding to the median speed of traffic) 

unless the traffic speed density function is highly skewed. In general, FIGURE 1 shows 

that a driver will tend to overestimate his or her extremity in the speed distribution, 

sometimes quite substantially. A driver in a high speed percentile (> p) will perceive 
that (s)he is in an even higher one, while a driver in a low speed percentile (< p) will 

think (s)he is in an even lower one. 

The driver's observed speed percentile is thus a biased representation of the true 

speed percentile p of V unless p = p. This bias is due to the overweighting of speeds 

very different from s as compared to those close to s. That is, the number of vehicles 

a driver will see whose speeds are very different from his or her own speed overrep 
resents the actual number of vehicles traveling at those speeds when compared to the 

number of vehicles seen that are traveling at speeds similar to the driver's. For ex 

ample, the number of much slower vehicles that a relatively fast driver passes is out of 

proportion to the actual number of such vehicles, making the driver perceive that (s)he 

is in an even higher speed percentile than (s)he really is. 

We now show that for the stated model for traffic speeds, p0b?P) always takes the 

form shown in FIGURE 1: 

THEOREM. For any continuous density function f(x) positive on its support, 

Pobs(p) is cl strictly increasing function, and for some p*, p** G (0, 1), we have 

Pob?P) < Pfor0 < p < p* and pobs(p) > p for /?** < p < 1. 

Proof. Write the inverse of F as h(p) 
= F~l(p). Making the substitution 

u = F(x) in (1) yields 

Pobs(p) = f0P(h(p)-h(u))du 

fo MP) 
- h(u)\du 

_f0P(h(p)-h(u))du_ 

f0P(h(p) 
- h(u)) du + ?I (h(u) 

- 
h(p)) du 

' 
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Since h(p) is an increasing function, it follows at once that f^(h(p) 
? 

h(u))du is 

increasing and JX (h(u) 
? 

h(p)) du is decreasing. A little work with inequalities shows 

that Pobs(p) is increasing as claimed. 
That Pobs(p) < P for 0 < p < p* for some p* G (0, 1) follows from the fact that 

i fo(h(p) 
- 

hW>du h(0) - h(0) lim 
P-+0+ 

Pob?P) lim = 0. 
P p-o+ f?\h(p)-h(u)\du f^\h(0)-h(u)\du 

Similarly, to show that p0b?p) > P for P** < p < 1 for some /?** g (0, 1), we use 

r \-Pob?P) v T1rpf]p(h(p)-h(u))du h(\) 
- 

h(\) 
hm -= hm 

?? -= ?i-= 0. 
1 p-*i fo \h(p) 

? 
h(u)\du f0 \h(l) 

? 
h(u)\ du 

Note that we can take p* = 
p** for each density function given in FIGURE 2. Although 

density functions for which p* must be less than p** exist, they have unusual forms 
that are unlikely to represent plausible traffic speed scenarios. FIGURE 3 shows an 

example: 

fix) 

0.2 0.4 0.6 

(a) 

Figure 3 (a) A density function f(x) with p* < p**; (b) pGbs(p) fc>r f shown in Fig. 3a 
(p* 

= 
.48, p** 

= .61) 

Conclusion 

Our theorem describes in simple terms the perception bias that may occur when a 
driver estimates the speed percentile p at which (s)he is driving by counting the num 
ber of vehicles passing or being passed. At low speeds relative to traffic, one will 
underestimate p, while at high speeds, one will overestimate p, regardless of the spe 
cific distribution of traffic speeds. The perception bias is greatest in situations when 
there is a large variation in traffic speeds (for instance, f5(x))> and least when there is 
small variation (for instance, f4(x)). 

Could it be that this perception bias encourages faster drivers to slow down, and 
slower drivers to speed up? If so, this is not the only way in which a driver's misper 
ceptions may affect the way he or she drives. Redelmeier and Tibrishani [2] showed 
that a driver in congested traffic may mistakenly judge that an adjacent lane is faster, 
perhaps leading to a needless lane change, when in fact the average speed of vehicles 
in that lane is just the same as in the driver's own. The phenomenon occurs because 

when the speeds of the two lanes fluctuate, with the same average speed for each, more 
of the driver's time is spent being passed by vehicles in the next lane than is spent pass 
ing such vehicles. Evidently, when it comes to judging one's speed relative to traffic, 
things are not generally what they seem! 
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Territorial Dynamics: 
Persistence in Territorial Species 
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The widely studied and very controversial northern spotted owl, along with many other 

threatened and endangered species, exhibits territorial behavior. That is, adult pairs 
claim and defend a home range encompassing sufficient resources and of sufficient 

size to allow the pair to survive and reproduce successfully. Readers may be familiar 

with population models such as the logistic growth model, the Gompertz model, the 

Ricker model, and the Beverton-Holt model. These all capture the basic concept of 

limited growth (carrying capacity); however, they fail to exhibit some fundamental 

characteristics of the dynamics of territorial species. In particular, they do not exhibit 

a threshold in the density of suitable habitat below which the species is destined for 

extinction even if some suitable habitat is still available. 

In this paper, we develop a model first proposed by Lamberson and Carroll [1] 
for the dynamics of a territorial animal or bird population. It consists of a continu 

ous model for dispersal which distinguishes between adults?individuals who hold 

territories?and juveniles?those (nonterritorial) individuals that have not yet secured 

a home range. Here we think of birth not as the time of physical birth, but the time 

at which juveniles leave their natal territory and begin the search for their own home 

range. The model explicitly considers the cost of dispersal by including an ongoing 
rate of mortality due to pr?dation and starvation while animals search for a territory. 

We establish that there is a threshold for density of suitable habitat, below which the 

population must decrease to extinction and above which the population tends to a 

stable positive equilibrium size. 

Within populations of territorial animals we frequently find individuals that have 

not had the good fortune to secure a home range. These individuals, sometimes called 

floaters, usually occupy habitat of marginal quality and not suitable for attracting a 

mate. Usually, they eke out a secretive existence on the fringes of territories already 
claimed by other individuals. The dynamics of this floater population is important in 

understanding the overall behavior of the species, especially if the species is threat 

ened or endangered. In our model, the floaters are considered part of the population of 

juveniles since they have not yet secured a suitable territory. 
In this paper, we use a simple system of differential equations to describe the dy 

namics of a territorial species. The behavior of the system will be studied under both 

equilibrium and nonequilibrium conditions. For equilibrium conditions, we will es 

tablish: the fixed points, their stability, and the critical threshold in habitat density for 

persistence of the population. 
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