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for x=—1,2). Similar methods yield reducible fourth degree polynomials (of both types).

We conclude by mentioning several papers on closely related topics. Ore [S] has generalized
the above and other results for polynomials assuming a particular prime value a certain number
of times to those assuming any prime values, and has also determined the exact number of prime
values a reducible polynomial can assume. Weisner [7] has obtained results for polynomials of
degree n which assume the same value k (where k is any integer #0) for n distinct values of x.
And finally the writer has shown [2] that finding solutions for the equal degree decomposition in
Pélya’s theorem is essentially equivalent to finding ideal solutions in the Tarry-Escott problem

[4]-

| -1 0 1 2 as ag
F(x) 1 -1 -1 1 p P
G(x) -p p P =p -1 -1
H(x) -p -p -P -p -p -P
TABLE 1
| 0 a, a,
F(x) 1 -1 ¥4
G(x) p -P 1
H(x) p p P
TABLE 2
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Do Good Hands Attract?

StaNLEY GUDDER
University of Denver
Denver, CO 80208

There are two different opinions about the prevalence of good hands in a poker deal.
According to one player: “Every time I get a good hand, everyone else drops out and I only win
a small pot.”” According to another: “Poker is an exciting game because there are either no good
hands or many good hands in a deal.”
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Do good hands attract? That is, does the existence of one good hand increase the probability
that there will be other good hands? We shall investigate this question for ordinary five-card
poker. The reader is invited to use similar methods for other games of chance.

To simplify our calculations we shall restrict ourselves to some of the best hands in five-card
poker. In the sequel we shall let R,, S;, K;, H;, F;, and T; be the events that player i is dealt a
royal flush, straight flush (including royal flushes), four of a kind, full house, flush (including
straight and royal), and three of a kind, respectively.

For royal flushes we have

4

P(R,-)=—(—5—25=l.539><10‘6
5
P(Rzuz,)=(—437—)=1.956><10-6
5
P(R;|R,NR,)= 4—22 =2.351%10~5
)

P(R,|R,NR, nR3)=—3lT =2.294x10-5.

5

Since P(R,|R,;)>P(R,) we say that a royal flush is attractive. A measure of this attraction is
the coefficient of attraction a(R,, R;)=P(R,|R,)/P(R,)=127. Thus, a royal flush is 1.27
times more likely given the existence of another royal flush than it otherwise would have been.
The next coefficient of attraction is a(Rj;, R,NR,)=P(R;|R,NR;)/P(R;)=1.53. This indi-
cates that a royal flush is 1.53 times more likely given the existence of two other royal flushes
than it otherwise would have been. The remaining coefficients of attraction are a(R,4, R,NR, N
R;)=1.49, and a(R;,R,N - NR;_;)=0 for i>5. It is interesting that although one, two, or
three royal flushes are attractive, two royal flushes are more attractive than either one or three
royal flushes.

We next summarize the situation for four of a kind. Since P(K;)=(13)(48)/ (552)=2.401 X104
and P(K,|K,)= (44/48)(12)(43)/(“57) =3.084 1074, we have a(K,, K;)=128. Similarly,
P(K;, K, nKz)=(44/48)(39/43)(11)(38)/(452)=4.085 X107%, so a(K;, K;NK,)=1.70. Letting
a;,=a(K;; 1, K;Nn -+ NK;) we have

a, =128 a, =341 a;= 1891
a,=1.70 as=5.32 ag= 5246
a;=2.35 ag=9.23 ay=296.7.

In this case the coefficients of attraction increase monotonically.
We list below a few other coefficients of attraction. It would be a good exercise for a class to
verify these and to compute others.

a(Fy, F)=129 a(F, F,nF)=1.60 a(F,, F,nF,NF)=159
a(S,,S)=138 a(H,, H)=1.20.

Let’s now consider attractions for hands of different types. For example, does a royal flush
attract four of a kind? Since

Pk ="23 5 401%10-4

(5)
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and

P(KZ|RI)=g%(;ﬁZ =2.243x10*,
(%)

we see that a royal flush repels four of a kind. Indeed, the coefficient of attraction is
a(K,, R))=P(K,|R,)/P(K,)=0.93. However,

P(K;|R;NR,)= _@)Z(EEZ =3.574x1074,
(%)
so that two royal flushes attract four of a kind and a(K3, R; N R,)=1.49. We find that three and
four royal flushes also attract four of a kind. In fact, a(K,, RN R, NR;)=2.52 and a(Ks, R, N
R,NR;NR,)=4.63.

It turns out that a royal flush repels full houses, attracts flushes, and repels three of a kind:
a(H,, R,)=0.95, a(F,, R,)=1.30, and a(7,, R,)=0.97.

We now answer the question that titles this paper: Do good hands attract? To be specific, let
us define a good hand to be a full house or better. Of course, this is quite arbitrary. One could
just as well define a good hand to be three of a kind or better, and the reader might try this or
other definitions. However, the more types one admits as a good hand, the harder the
calculations.

If G, represents the event that player i is dealt a good hand, then G;=S; UK; U H,. Hence,
P(G,)=P(S;)+P(K;)+ P(H;)=1.695%10"3. To compute P(G,|G,) we have

P(G,|G,)=P(S, UK, UH,|S, UK, UH,)
=P[(S, UK, UH,)N (S, UK, UH,)]/P(G))
=P(G,)”'[P(S1)P(S,]5:))+ P(K\)P(K;| K\)+ P(H,)P(H, | H,)
+2P(8,)P(K;|S:)+2P(S,)P(H,|S,)+2P(K,)P(H,|K,)].

After computing all the above probabilities one finds that P(G,|G,)=2.063x 103, Hence, one
good hand attracts another, and a(G,,G,;)=P(G,|G,)/P(G,)=1.22. Of course, the answer
could be quite different if the standard for a good hand is lowered. (One could also consider
whether two good hands attract a good hand, and so forth.)

These examples motivate a theory of attraction for an arbitrary probability space. To avoid
certain pathologies, we shall only consider events 4 such that 0 < P(4) <1. We say that an event
A attracts an event B if P(B|A4)>P(B). If P(B|A)<P(B) we say that 4 repels B. Since
P(B|A)=P(ANB)/P(A), we see that A attracts B if and only if P(4NB)>P(A)P(B), and 4
repels B if and only if P(AN B)<P(A)P(B). It follows that A4 attracts B if and only if B
attracts A4 so attraction is a symmetric relation. Hence, we can use the terminology that 4 and B
are mutually attractive instead of A attracts B. Similar terminology can be used for repulsion.

It is clear that 4 attracts 4, so that attraction is a reflexive relation. Also, A repels A’, the
complement of 4. More generally, if either 4 or B is contained in the other, then 4 and B are
mutually attractive. Moreover, if 4 and B are disjoint, then 4 and B are mutually repulsive.

Attraction is not, however, an equivalence relation, since it is not transitive. For example, in a
probability space of five points, a,, a,, a3, a4, as, each with equal probability, let 4 = {a,, a,, a;},
B={a,, as,a,} and C={as, a,, as}. Then 4 and B are mutually attractive, as are B and C, but
A and C are not mutually attractive. For a similar continuous example, select the unit interval
[0,1] as the probability space, with Lebesgue measure, and let 4 =[0, 3], B=[3, 3], and C=[3,2].

We conclude with a list of good class exercises:

Problem 1. A and B are mutually attractive if and only if P(B|A4)>P(B|A4’).
Thus A and B are mutually attractive if and only if B is more likely when 4 has occurred
than when A has not occurred.
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Problem 2. A neither attracts nor repels B if and only if 4 and B are stochastically
independent.

Problem 3. If A attracts B, then A repels B’.

Problem 4. A and B are mutually attractive if and only if 4’ and B’ are mutually attractive.

Problem 5. If BN C= and A attracts both B and C, then A4 attracts BUC.

Problem 6. If A attracts both B and C, and A4 repels BN C, then A4 attracts BU C. Is there any
example in which 4 attracts both B and C, but repels BUC?

Problem 7. If B,,..., B, are mutually disjoint and exhaustive (U B; =S), and if 4 attracts
some B,, then 4 must repel some B;.

We can define the coefficient of attraction for two events 4 and B by a(4, B)=a(B, A)=
P(ANB)/P(A)P(B)=P(A|B)/P(A)=P(B|A)/P(B). We can then use the coefficients of
attraction to express Bayes’ rule:

Problem 8. If B,,..., B, are mutually disjoint and exhaustive, then Xa(4, B;)P(B;)=1.

The author would like to thank Ron Prather for some interesting discussions on this topic.

Factorization of a Matrix Group

J. Gregory DoBBINs
Mount Vernon Nazarene College
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Matrix theory is a good source for illustrations of the basic concepts of group theory. For
example, if 4 is any element of the group GL(#, R) of nonsingular »X n matrices, and A=det 4,
then whenever A!/" is real, we can write 4 as (A~!/"4)(A/"I) where I is the identity matrix.
Since det(A ~'/"4)=1, the matrix A~!/"4 is in the group SL(n, R) of matrices with determinant
1; moreover, A!/"I is a scalar matrix which is in the center of GL(n, R). Each of these subgroups
is normal in G and their intersection is the subgroup {I, —I} when 7 is even, and {/} when n is
odd. Thus when # is odd, it follows that GL(n, R) is the direct product of these two subgroups.

This factorization of A brings to mind the theorem that GL(n, K) is a semidirect product
(where only one of the two subgroups need be normal) of the unimodular matrices SL(n, K)
and the nonzero field elements K* [1; 158], and motivates the following quick proof. If K is any
field and A=[aq,;] is any matrix in GL(n, K) with det(4)=A, then

ay... o1 a1 0. 0

. a... a2'j_l a A" 0 l 0
: : : 1

ppeee Quuy @, A"V 0 0. A

The left matrix in this factorization is unimodular, whereas the right matrix is in a nonnormal
subgroup H of GL(n, K), and H is isomorphic to K*. Thus, the factorization of 4 makes the
result that GL(n, K) is a semidirect product of SL(#n, K) and K* apparent. It is easy to see that
the intersection of the two subgroups here is trivial.
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