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Abstract

Let prize X in a game be a random variable with a cumulating distribution function F,
E[X]# 0, and Var(X) < co. In a Gambler’s Ruin Problem we consider the probability
Pr(A, B) of accumulating fortune A before losing the initial fortune B. Suppose our
Gambler is to choose between different strategies with the same expected values and
different variances. Pr(A, B) is known to depend in general on the whole cumulative
distribution function F of X. In the paper we derive an approximation which implies
the following rule called A Rule of Thumb (not only) for Gamblers:
if E[X] < 0 then the strategy with the greater variance is superior while in case
E[X] > 0 the strategy with the smaller variance is more favorable to the Gambler.
We include some examples of applications of The Rule. Moreover we derive a
general solution in the Roulette case and use it to show good behavior of The Rule
explicitly.

Abbreviated Title: A RuLE OF THUMB
AMS 1991 subject classifications: primary 60G40
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1. INTRODUCTION.

Let X, X; ¢ = 1,...,n be independent, identically distributed random variables (r.v.)
with a cumulative distribution function (c.d.f.) F' and let

S =3 Xi. (1.1)

A modification of the classical Gambler’s Ruin Problem can be formulated in the following
way in terms of the random walk theory. Let X;’s represent prizes (or losses if X; < 0) of
the Gambler in consecutive plays of the game. Assuming that the Gambler begins with
an initial fortune B > 0, he withdraws at the first time N either after losing his initial
fortune B (Gambler’s ruin) or after successfully accumulating fortune A > 0. It is known
(see Ross (1983), p.234-235) that probability Pr(A, B) of the success equals the probability
that random walk Sy reaches level A or above before reaching a value less or equal —B.

For the classical Gambler’s Ruin Problem we refer to Whitworth (1901), Uspensky (1937)
and to more recent texts by Dubins and Savage (1965), Feller (1966), pp. 344-349, Ross
(1983), pp. 235, Billingsley (1979), p. 77 to list a few references. Another, so called attrition
ruin problem was considereded in Kaigh (1979).

The formulation of the problem in terms of the Gambler’s ruin is simple and attractive,
and the scheme provides simple and reasonable models for various types of activities and
phenomena (cf. Examples 1-3 below).

Let 87 # 0 be the unique non-zero root of the equation

$(0) = El" ] = 1. (1.2)
It is easy to see that such fp exists when the moment generating function is finite and
P(X >0)>0and P(X <0)>0.

It will be convenient to consider a modified version of equation (1.2) by taking logarithms
of both sides
¥(0) = In(E["*]) = 0. (1.3)

Jensen’s inequality and strict concavity of b imply that
0r - E[X] < 0. (1.4)

Using the martingale approach one can derive the following formulas (see Ross (1983),
p. 235) for the probability Pr(A, B) of a successful termination of the game

1 _ e—ap-B

Pr(A,B) = +ep(A, B), (1.5)

e0rA _ o—6p-B
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where

U)F(A, B)

er(A, B) Py E———-T (1.6)
wr(A, B) —up(A, B)Pr(A, B) —vr(A, B)(1 — Pr(A, B)), (1.7)
up(A) Er(expl0rSn]|Sn > A) — exp(0rA), (1.8
and

vp(B) Er(expldrSn]|Sy < —B) — exp(—0rB). (1.9)
(1.10)

Notice that
up(A)-vp(B) <0. (1.11)

Hence
er(A, B)| < max(|ur(A)], lvr(B)]) (1.12)
) = |efrd — ¢=brB| .
and

up(A) = 0= ¢er(A,B) >0, (1.13)
vp(B) = 0= ¢er(A,B)<0. (1.14)

Often error ep(A, B) is negligible and (1.5) yields a useful approximation to Pr(A, B)

given by
1 _ 6—€F~B

Pr(A, B) = (1.15)

o0p-A _ o—0p-B"

Let us note that Uspenski (1937), p.146 obtained — for random variables X taking only
two values — estimates of Prp(A, B) from above and below. In the sequel we shall use (1.5)
to keep control over the error term ep(A, B). Approximation (1.15) implies the following
ones for the expected value of the game F[Sy]

E[Sy]~ A-Pp(A,B)— B-(1— Pp(A,B)) (1.16)
and for the expected time of the duration of the game FE[N]

A-Pr(A,B)— B- (1 — Pp(A, B))
E[X] '

E[N] ~ (1.17)

In view of the Wald equality
E[SNy] = E[N] - E[X] (1.18)
and hence the expectation E[X] is critical for the quality of a strategy.
In this note we derive a quick and easily to applied approximation to the exact test

for comparison of performances of gambling strategies corresponding to X'’s with equal ex-
pectation and different variances. Since the conclusions from the approximate criterion are

2



correct in typical cases we call it a Rule of Thumb (not only) for Gamblers. The Rule can
be formulated as follows

if E[X] < 0 then the stralegy with the greater variance is superior while in case
E[X] > 0 the strategy with the smaller variance is more favorable to the Gambler.
(1.19)

The Rule may serve as a useful tip both in classroom and in numerous models just as
a rule of thumb in the process of fast decision making. Below we include several typical
examples of applications of The Rule. A precise comparison of the exact solution (1.5)
and approximation (1.15) in the Roulette case is postponed till Section 3. The comparison
provides also examples in which — because of non-negligible error terms — The Rule is not
valid and results in an inverse ordering of strategies.

Example 1. At a water reservoir daily changes of the water level can be described by a
random variable X. Lel us measure the water levels as deviation from a ‘standard’ stale at
level 0. The accumulation of these random changes may result in crossing either the lower
critical level —B or an upper critical level A. Suppose that in a considered period of time the
mean daily change is negative. In a year (or in a climate) with large rainfall fluctuation the
chances for crossing the upper critical level A are (according to The Rule and in agreement
with observations) much higher than in a year (or climate) with a stable weather and having
the same average daily rainfall.

Example 2. An investor on a Stock Market is to choose between two types of stocks: one s
characterized by small fluctuation while the other is very speculative. Assume that an average
return from investing on both types of stocks is the same. Buying and eventually selling the
stock results in a random gain or loss. Subsequent operations result in accumulation of
incomes and it can be modeled as a game described al the begining of this section. The Rule
implies that on a ‘bear markel’ (i.e. when the average of stock prices is going down) the
chances of achieving fortune A before losing the initial capital B are betler for the investor
in speculative stocks. On a ‘bull market’ (i.e. when average of stock prices is gaining on
value) dealing with stocks having a stable upward trend results in a higher probability of the
success.

Example 3. Mulations in the genetic code resull in average in a regression of the character-
istics of the mutant. This seems intuitively clear because only some very specific mutations
raise the survival skills of the species to a higher level. The average effect of chemically
admissible but random mutations seems to handicap the species. It agrees with the Second
Principle of Thermodynamic which requires an increase of Entropy i.e. non-equilibrium pro-
cesses are moving lowards the most probable state of the system. Let X and Y stand for two
competing quantitative descriptions of the changes resulting from random mutations. Let
these two types of mutations have the same negative expectation and let Var(X) < Var(Y).
Assume that accumulation of changes to level A results in new species on the higher level of
the evolution tree. Assume further that the species die if the changes accumulate in a wrong



direction to level —B. The rule implies that chances for a qualitatively posilive change result-
ing from accumulation of subsequent genelic changes are higher in the case of mutation lype
Y with larger variance. It corresponds to mutation type resulling in frequent small negative
changes and rare bul significant mutations in the positive direction which agrees with the ex-
perience of biologists. They have observed that chains in the evolutionary processes are often
missing and transitions from one species lo another are often not continuos. This seems lo
correspond to the pace of the evolutionary process resulting from the mutation processes Y
with large variances. We should however remember that the probability of achieving the high
level A in a process with negative drift is very small. This in turn agrees with the sparseness
(uniqueness ¢ ) of the life in our known Universe.

The models presented in these examples is very simplified but points to important dif-
ferences in some competitive processes having the same drift but different variances.

2. THE RULE OF THUMB.

The probability of success Pp(A, B) given by (1.5) is important for any characterization
of the quality of the strategy X. Both approximations to the expected time of the game
E[N] and the expected award to the gambler E [Sy] are linear functions of Pr(A, B). Hence,
in this paper, we focus on Pp(A, B).

We recall that formulas (1.15)—(1.17) are approximate because of the overshooting effect.
This occurs when the game terminates either after a win resulting in an increase of the
Gambler’s fortune from a value below A to a value greater than A, or when a loss results
in a drop in the Gambler’s fortune from a value above —B to a value smaller than —B.
The approximation is a consequence of the assumption that the final fortune of the Gambler
equals A in the first case and —B in the second. When A and B are large compared with
values of X the approximation is satisfactory and is usually accepted in the literature (see
Ross (1983), p. 235).

In the sequel we shall consider yet another approximation. Qur assumptions imply that
1 given by (1.3) is a convex function with a root 8 # 0. The Taylor expansion of ¢ at zero

yields
2

¥(6) :9-E[X]+%-Var(X)—|-0(92). (2.1)

Neglecting the ‘little o’ term in (2.1) we get the following approximation fz to the non-
zero root O of equation (1.3)

_ 2. F[X]
Op= ————. 2.2
F Var(X) (2:2)
If expansion (2.1) of ¢ is accurate at 0 then approximation (2.2) is fairly good. We
should point out that if X is normally distributed then % is a quadratic function and the
0(6?) term in (2.1) equals 0. Thus our approzimation of OF is exact in case of normal X.

We shall need the following lemmas.



Lemma 1. For any positive A and B function v given by

1 —e B
Yz) = 52 (2.3)

e —e
is decreasing.

Proof: Since exp(z) is convex and increasing the The Mean Value Theorem implies that

for every x
1 — e—Az eBz —1

A "B

Next we note that
y o(A+B)h _ Bh 4
m-—— = —
B

h—0 eBh — 1

and hence for h sufficiently small inequality

o(A+B)h _ Bk

— Az Bz
(1—e™™) < (e”"=1)- B

holds. With some elementary algebra this can be transformed for A > 0 into inequality

1 — 6—B(m+h) 1 — e—Bx

6A(z‘+h) _ 6—B(1‘+h) < 6Aa:f _ 6—Baz

which implies that v is decreasing. <

Lemma 2. Let Fy and Fy be cumulative dislribution functions, 0; i = 1,2 be the correspond-
ing roots of (1.2), and 0; be approximations given by (2.2). Then inequality

1) = (0) = (100) = 1(0) + er (A, B)
— (+(8) = 7(82)) — 5 (4, B) (2.4)

holds if and only if
Pr,(A,B) > Pp, (A, B). (2.5)

Proof: The proof of equivalence of inequalities (2.4) and (2.5) follows easily from (1.5)
and from

Pr(A, B) =(0:) + (4(6:) = 1(0:)) + em(A, B), i=1,2.
%

Theorem 1. Let X and Y represent random rewards of the Gambler such that
p=FE[X]=FE[Y]#0 and Var(X) < Var(Y).

Moreover, let F' and G be the cumulative distribution functions of X and Y, respectively
such that the corresponding non-zero roots of equation (1.3) are unique. Then
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(a) if p < 0, the overshooling error is negligible, and the Taylor expansion (2.1) is suffi-
ciently accurate in case of X and Y, i.e. if inequality

(errm) 1 (emi) = (o0 (e ertan

- (7(90) ! (—ZVJ(Y))) ~ oA )
(2.6)

holds, then it follows that Pr(A, B) < Ps(A, B);

(b) if p > 0, the overshooting error is negligible, and the Taylor expansion (2.1) is suffi-
ciently accurate in case of both X and Y, i.e. if inequality

() () 2 b () et

= (2100 -7 (~2p ) ) e
(2.7)

holds then it follows that Pr(A, B) > Pg(A, B).

Proof: Theorem 1 follows easily from Lemma 2 applied in the case of F' and G, respec-
tively. &

We conclude this section with several remarks.

Remark 1. In view of Lemma 1, the left hand sides of inequalities (2.6) and (2.7) are
positive while the right hand sides are typically small so that both inequalities often hold.

Recall that in the case of a normal X and Y the expressions on the right hand sides of (2.6)
and (2.7) equal zero and if

up(A) =0 and ug(A)=0
or

vp(B) =0 and vg(B) =0
then the errors ep(A, B) and eq(A, B) are of the same signs.

By Lemma 1 if inequalities (2.6) and (2.7) hold, Theorem 1 can be given the form referred

to as The Rule of Thumb (not only) for Gamblers and formulated in Section 1 (1.19). The
interpretation of The Rule is fairly easy:



if u < 0 then the Gambler has a very small chance of a sequence with sufficiently
frequent events which are favorable to him thus successfully rising his fortune
above A. Therefore it pays to seek rare large rewards while paying small penalties
for frequent losses;

if 4 > 0 then the situation is opposite and playing patiently a strategy with small
variance and positive expected value is recommended — time and patience have
better chances of paying off.

Remark 2. If values A and B are large compared with values of possible rewards to the
player in a single game, then one can replace the original random variable X with a sum of ils
several independent subsequent realizations. Since the sum can be considered as approximately
normally distributed, and since the Taylor approximation (2.1) is exact in the normal case,
one can expect that approximation (2.2) is fairly good in typical applications.

Remark 3. The Taylor expansion (2.1) is taken at zero and il is important for it to yield an
accurate approximation of ¢ at 0. Formula (2.2) indicates that O is typically in the vicinity
of zero when E[X] & 0. Thus the chance for a good approximation increases in games with
reward close to zero. The stochastic model corresponding to the described gambling seems to
be adequate for numerous biological and economic mechanisms: hence the words ‘not only’
in the title. Since nonequilibrium processes occurring in the real world are not far from their
equilibrium state, one can expect that the corresponding expectation of X is typically close
to zero, and hence that our simple Rule of Thumb is correct in ordering different ‘gambling’
strategies.

Remark 4. The steps of the proof of the Theorem reveal the following conclusions about
changing stakes. Changing stakes corresponds to multiplying the random variable X by a
constant s > 0. Thus Wald’s equation (1.2) implies that the new root Og, follows the rule

Op, = — - Op
s
Since function vy(x) is decreasing, multiplying stakes by s resulls in an increase of the ap-
prozimation to the probability of success Pr(A, B) given by (1.15) when p < 0 and s > 1 or
when 1> 0 and s < 1. It is clear that Pp(A, B) decreases in both cases.

3. ROULETTE

In this section we consider in detail different betting strategies in a Roulette game. We
derive a general exact solution for the probability of a successful accumulation of capital
A > 0 before losing the initial capital B > 0. We use this solution to show the range



of parameters A and B for which The Rule of Thumb applies. '

Xi, k=1,2,3,4,6,9,12,18 in the Roulette with

We consider strategies

36
X, = - 1 with probability ;—7, (3.1)
X, = —1 with probability 1 — ;—7 (3.2)

In every game the player applying strategy X is choosing k different numbers from the
set {0,---,36} and puting a unit value chip on these numbers. He either loses his chip with
probability 3]“—7 when the winning number is different from any of his chosen & numbers or,
in case the winning number equals one of his chosen numbers he is being awarded chips of

2 — 1 units value. The expectation for all strategies equals y = E[X}] = —3= while the

variance depends on k
36\? /37
Xp)= 1| = ——1). .
Var(Xy) (37) (k ) (3:3)

To list a few examples of classic strategies covered by our scheme we note that choices
k=1,2,3,4,6,12, and 18 correspond to popular strategies allowed in casinos and called
Strait, Split, Street, Square, Line, Column, and Black Diamond, respectively. Playing on
Black Diamond (or on Red Diamond, Pair, Impair, Passe, Manque, etc.) corresponds in our
convention to strategy Xis. Let us note that in practice for any k. strategy X can be played
by putting k chips on k different numbers and just considering the value of the k chips being
a unit. ? To make the comparison of different strategies easier we restrict ourselves to k’s
with integer win wy = % — 1. The player can then put — in case of the X}, strategy — one
chip on k chosen numbers.

We could not find in the literature the general form of Pr(A, B) for strategies X}, and
only the easiest case & = 18 has been solved in the quoted in Introduction standard text-
books. Dubins and Savage (1956), Ch. 6, discuss the problem in general terms but get no
explicit solution. Uspensky (1937) derived upper and lower bounds for the corresponding
probabilities. Since the general solution is essentially used in our discussion we include its
short derivation. It also provides a pattern for solutions in the case of other similar prob-
lems. It may be of some interest that the strategies of playing on k different numbers have
more sophisticated properties in case of a relatively small A, see Figure 4 for one particular
case. A detailed discussion of practical strategies in Roulette is however beyond the scope
of this note. First we prove the following theorem which easily implies the solution in the
case discussed.

!Casinos over the world may have rules differing slightly from these considered in Section 3. The differ-
ences may result in conclusions different from these obtained in the paper. Moreover, our Rule of Thumb is
not valid in the considered Roulette case for small A or B, cf. Figures 2-4.

2For k=1,2,3,4,6,9,12, and 18 the awards X; are integer and results of Theorem 2 apply. For other
integer k’s Corollary 1 presents a good approximation to the exact solution, which is a bit more complicated
and is not discussed in this section.



Theorem 2. Let w, B, C be integers, where

B s the initial fortune of the Gambler, B > 0,
C' is the ultimate fortune of the Gambler, C' > B > 0,
w is the number of chips the Gambler may win in every game, w > 1.

Suppose that in every game the Gambler is winning w chips with probability p, or losing
one chip with probability g =1 — p. If the game terminates either at the first moment when
(a) the total fortune of the Gambler reaches or exceeds C', or (b) his fortune reaches value
0, then the probability of the former, favorable for the Gambler case is given by (3.4)-(3.6),
(3.9)-(3.10), and (3.13)-(3.15).

Proof: Let w and C be fixed and consider the probability
P(B)=P(w,C,B)

of concluding the game for the Gambler with at least C tokens. We have the following
boundary conditions

P(B) = 0for B<O0, and (3.4)
P(B) = 1for B> C. (3.5)

If C <w+1 then
P(B)=1-4" (3.6)

for B=0,...,C—1.
If C > w+ 1 then the standard argument (see Dubins and Savage (1965), Ch. 6 or
Billingsley (1979, p.77)) implies the following recurrence relation for 1 < B < C' — w

PB)=p-P(B+w)+q-P(B-1). (3.7)

If B> C —w then
1-P(B)=q-(1=P(B-1)). (3.8)

We seek the solution of (3.7)—(3.5) for 1 < B < (' — w in the form
P(B)=a-p" +5, (3.9)
where p is the unique different from 1 solution of the equation
ppi+qop =1 (3.10)

Function (3.9) is a solution of the linear difference equation (3.7) increasing in B, cf. Gelfond

(1958), p. 272 (cf. also Uspenskii (1937), p.146). By (3.4)-(3.5) equation (3.7) yields the
following two equations for B =1 and B = C' — w, respectively

a-p+p = p(oz-pw+1—|—ﬁ) (3.11)

a-p? B = ptgla-p?TT 4 B). (3.12)
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Solving (3.11)-(3.12) we get
@ = —— (3.13)
B = —— (3.14)
By (3.8), (3.9), (3.13), and (3.14) we obtain the remaining part of the solution
1 c

: P p
PC—-—w+j)=1—¢gt . —n0n. ,
( ) p—q p°—1

i=1,. . w—1 (3.15)
Thus, the complete solution is given by (3.4)-(3.6), (3.9)-(3.10), and (3.13)-(3.15). <

Corollary 1. The probability of a successful termination of the game in the Roulette case
and using strategy Xy, is given by (3.4)-(3.6), (3.9)-(3.10), and (3.13)-(3.15), where

C=A+B

k 36
P= 3 andw:?—l.

The expectation g of Xj in Roulette is negative and The Rule of Thumb (not only)
for Gamblers implies that higher probabilities of achieving fortune A before running off the
initial fortune B are expected for strategies X with larger variance, i.e. with smaller £.
Hence the best strategy is expected for & = 1.

Figure 1 shows the graphs of the approximations of the probability of success Pr(A, B)
given by (1.15). The plotted functions have argument A while value of B is fixed and has
a moderate value B = 40. The graphs for other values of B show similar behavior and are
in a good agreement with The Rule. It worth noting the big difference between strategies
for k = 1 and for k = 18 corresponding to strategies called Straight and Black Diamond (or
Red Diamond, Pair, etc.), respectively. The Black Diamond or Red Diamond strategy is,
under the presented rules and for moderate or large A, one of the worst of those considered.
The strategies with & = 18 correspond to the classical Gambler’s Ruin Problem are already
classical in the literature. They have been considered e.g. in Dubins and Savage (1965),
Feller (1966) pp. 344-349, Rényi (1969), Chow, Robbins and Siegmund (1971), Billingsley
(1979) p. 77, and Ross (1983) p. 235.

Figure 2 displays the range of A and B for which The Rule correctly classifies X; strategy
as the best. Figure 3 provides some information on the precision of the discussed approxima-
tions. It is worth noticing that in the present example Pr(A, B) given by (1.15) overestimates
the true probability Pr(A, B) of the successful termination of the game. This can be eas-
ily explained by (1.14) because the overshooting error is vp(B) = 0 in the case discussed.
Finally, Figure 4 shows the exact probabilities Pr(A, B) corresponding to strategies called
Strait (k = 1), Square (k = 4), and Black Diamond (k = 18), respectively. Except for small
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Figure 1: Approximate probabilities Pr(A, B) given by (1.15) of achieving A before losing
B in Roulette, for B = 40 and strategies corresponding to k = 1 (solid line), 4 (dashed line),
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Figure 4: The exact probabilities of achieving A before losing B in Roulette, for B = 40
and strategies corresponding to k = 1 (solid line), k = 4 (dashed line), and k = 18 (dashdot
line).
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values of A they are in a good agreement with the ordering suggested by The Rule.

Remark 4 implies that since the expected value of a single play is negative the approximate
probability Pr(A, B) of winning increases when the player increases the stakes. Hence,
assuming that B > 1.0, the theoretical maximum is achieved at s = B. One should be
however careful with the last conclusion because the overshooting effect may dominate for
small B and A, and make the conclusion to The Rule incorrect. The effect of this type can
be seen in Figure 4 for small values of A.

Another interesting feature of the Roulette game can be observed using approximation
(1.17) of the expected time of the game. It is given by the limit

assuming fixed B. The limit can be easily seen in graphs and admits an easy interpretation:
very fast with an increase of A the ruin of the Gambler prevails very rapidly, and hence the
expected time of the game is determined by the initial fortune of the Gambler and does not
depend on any particular strategy. Yet it is surprising how much faster this upper bound
for the expected time of the game is achieved with an increase of A while playing the Black
Diamond or Red Diamond strategy in comparison with the Straight strategy.

Acknowledgement. The author wishes to thank the referee for a thorough reading of
the paper, suggestions which improved presentation of the results, and for references to the
early papers considering the Gambler’s Ruin problem.
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