
MathSoft

S-PLUS
Trellis Graphics User’s Manual

Trellis Versions 2.0 & 2.1

Richard A. Becker: AT&T Research
William S. Cleveland: Bell Labs

July 1996

MathSoft, Inc

Seattle, Washington

http://www.research.att.com/~rab/
http://www.research.att.com/
http://cm.bell-labs.com/who/wsc/
http://www.bell-labs.com/
http://www.mathsoft.com/splus/


The correct bibliographic reference for this document is as follows:
Becker, R. A. and Cleveland, W. S.,S-PLUS Trellis Graphics User’s Manual,
Seattle: MathSoft, Inc., Murray Hill: Bell Labs, 1996.

Copyright c
1996, MathSoft, Inc. and Lucent Technologies.
All Rights Reserved.

S-PLUS is a registered trademark and S+INTERFACE is a trademark of
Mathsoft, Inc. S, New S, and Trellis Graphics are trademarks of Lucent
Technologies, Inc. OPEN LOOK and UNIX are registered trademarks of UNIX
Systems Laboratory, Inc. Data Junction is a trademark of Tools & Techniques,
Inc. PostScript is a registered trademark of Adobe Systems, Inc. OpenWindows,
NeWS, SPARC, Sun, Sun-3, Sun-4, Sun386i, and SunView are trademarks of Sun
Microsystems, Inc. DEC, DECstation, and DECwindows are registered
trademarks of Digital Equipment Corporation. Motif, OSF, and OSF/Motif are
registered trademarks of the Open Software Foundation, Inc. Apple, LaserWriter,
and TrueType are registered trademarks of Apple Computer, Inc. HP, LaserJet,
and HP-GL are registered trademarks of Hewlett-Packard Co. Intel is a registered
trademark and 386, 387, 486, and SX are trademarks of Intel Corporation.
Microsoft and Excel are registered trademarks and Windows is a trademark of
Microsoft Corporation. Paintbrush is a trademark of ZSoft Corporation.
WATCOM is a trademark of WATCOM Systems, Inc. PKZIP, PKUNZIP, and
PKSFX are registered trademarks of PKWARE, Inc.Élan License Manager is a
trademark of Elan Computer Group.



Contents

1 About Trellis Graphics 1
1.1 Discovering the Morris Mistake. . . . . . . . . . . . . . . 2
1.2 Seeing the Sunspot Cycles. . . . . . . . . . . . . . . . . . 4
1.3 Trellis Features. . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Trellis and the Core S-PLUS Graphics. . . . . . . . . . . . 7
1.5 Trellis vs. the Old S-PLUS Graphics. . . . . . . . . . . . . 7

2 About This User’s Manual 9
2.1 What Does thisManualCover?. . . . . . . . . . . . . . . . 9
2.2 Trellis and S-PLUS Graphics. . . . . . . . . . . . . . . . . 9
2.3 Other Reading About Trellis. . . . . . . . . . . . . . . . . 9
2.4 Some Important Conventions Used in thisManual . . . . . . 10
2.5 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Code for the Examples in ThisManual . . . . . . . . . . . . 11

3 Getting Started 13
3.1 trellis.device(). . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 dev.off() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Trellis Objects: print.trellis() and update(). . . . . . . . . . 14
3.4 Example Functions. . . . . . . . . . . . . . . . . . . . . . 15
3.5 Online Documentation. . . . . . . . . . . . . . . . . . . . 17

4 A Roadmap of Trellis Graphics 19
4.1 General Display Functions. . . . . . . . . . . . . . . . . . 19
4.2 Common Arguments. . . . . . . . . . . . . . . . . . . . . 19
4.3 Panel Functions. . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Core S-PLUS Graphics. . . . . . . . . . . . . . . . . . . . 20
4.5 Devices and Settings. . . . . . . . . . . . . . . . . . . . . 20
4.6 Data Structures. . . . . . . . . . . . . . . . . . . . . . . . 20

i



5 Giving Data to General Display Functions 21
5.1 A Data Set: gas. . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 formula= . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 data= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 subset= . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Data Frames. . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Aspect Ratio 29
6.1 The Aspect Ratio of a Graph is a Critical Factor. . . . . . . 29
6.2 aspect= . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 General Display Functions 35
7.1 A Data Set: fuel.frame. . . . . . . . . . . . . . . . . . . . 35
7.2 xyplot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 bwplot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.4 stripplot() . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5 qq() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6 dotplot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.7 barchart() . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.8 piechart() . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.9 qqmath(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.10 histogram() . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.11 densityplot(). . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.12 splom() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.13 parallel(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.14 A Data Set: gauss. . . . . . . . . . . . . . . . . . . . . . . 60
7.15 contourplot() . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.16 levelplot() . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.17 wireframe() . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.18 cloud(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.19 The Display Functions and Their Formulas. . . . . . . . . 68

8 Arranging Several Graphs On One Page 69
8.1 print() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Multipanel Conditioning 75
9.1 A Data Set: barley . . . . . . . . . . . . . . . . . . . . . . 75
9.2 About Multipanel Display . . . . . . . . . . . . . . . . . . 75
9.3 formula= . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.4 Columns, Rows, and Pages. . . . . . . . . . . . . . . . . . 78

ii



9.5 Packet Order and Panel Order. . . . . . . . . . . . . . . . 78
9.6 layout= . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.7 Main-Effects Ordering: reorder.factor(). . . . . . . . . . . 83
9.8 Controlling the Pages of a Multipage Display. . . . . . . . 84
9.9 Summary: How to Lay Out a Multipanel Display. . . . . . 84
9.10 A Data Set: ethanol. . . . . . . . . . . . . . . . . . . . . . 84
9.11 Conditioning On Discrete Values of a Numeric Variable. . . 86
9.12 Conditioning On Intervals of a Numeric Variable. . . . . . 88
9.13 equal.count() . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.14 Shingles: shingle(). . . . . . . . . . . . . . . . . . . . . . 90

10 Scales and Labels 93
10.1 xlab=, ylab=, main=, sub=. . . . . . . . . . . . . . . . . . 94
10.2 xlim=, ylim= . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.3 scales=, pscales=. . . . . . . . . . . . . . . . . . . . . . . 102
10.4 3-D Display: aspect=. . . . . . . . . . . . . . . . . . . . . 104
10.5 Changing the Text in Strip Labels. . . . . . . . . . . . . . 104
10.6 Strip Label Text Size: par.strip.text=. . . . . . . . . . . . . 108
10.7 Programming Strip Labels: strip=. . . . . . . . . . . . . . 108

11 Devices 111
11.1 Three Kick Methods . . . . . . . . . . . . . . . . . . . . . 111
11.2 trellis.device(). . . . . . . . . . . . . . . . . . . . . . . . . 111
11.3 Sending to a Printer or a File. . . . . . . . . . . . . . . . . 111
11.4 Devices for thisManual . . . . . . . . . . . . . . . . . . . . 113
11.5 Multiple Devices: dev.list(), dev.cur(), dev.set(). . . . . . . 113

12 Panel Functions 115
12.1 How to Change the Rendering in the Data Region. . . . . . 115
12.2 Passing Arguments to a Default Panel Function. . . . . . . 116
12.3 Writing A Panel Function: panel=. . . . . . . . . . . . . . 118
12.4 A Panel Function for a Multipanel Display. . . . . . . . . . 120
12.5 Special Panel Functions. . . . . . . . . . . . . . . . . . . . 122
12.6 subscripts= . . . . . . . . . . . . . . . . . . . . . . . . . . 124

13 Panel Functions and the Trellis Settings 127
13.1 trellis.par.get(). . . . . . . . . . . . . . . . . . . . . . . . . 127
13.2 show.settings(). . . . . . . . . . . . . . . . . . . . . . . . 129
13.3 trellis.par.set(). . . . . . . . . . . . . . . . . . . . . . . . . 132

iii



14 Superposing Groups on a Panel 133
14.1 panel.superpose(). . . . . . . . . . . . . . . . . . . . . . . 134
14.2 key= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

15 Data Structures 157
15.1 make.groups(). . . . . . . . . . . . . . . . . . . . . . . . . 158
15.2 as.data.frame.array(). . . . . . . . . . . . . . . . . . . . . 158
15.3 as.data.frame.ts(). . . . . . . . . . . . . . . . . . . . . . . 162

16 More on Aspect Ratio and Scales: Prepanel Functions 165
16.1 prepanel=. . . . . . . . . . . . . . . . . . . . . . . . . . . 166

17 More on Multipanel Conditioning 171
17.1 between= . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
17.2 skip= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
17.3 page= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

18 More Examples 183

iv



List of Figures

1.1 Discovering the Morris mistake.. . . . . . . . . . . . . . . 3
1.2 Seeing the sunspot cycles.. . . . . . . . . . . . . . . . . . 5

3.1 Normal QQ plot by voice. . . . . . . . . . . . . . . . . . . 16

5.1 Simple X-Y plot. . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Simple X-Y plot with subset specification.. . . . . . . . . . 27

6.1 Setting the aspect ratio.. . . . . . . . . . . . . . . . . . . . 31
6.2 Banking to 45 degrees.. . . . . . . . . . . . . . . . . . . . 33

7.1 X-Y plot with unit aspect ratio.. . . . . . . . . . . . . . . . 37
7.2 Simple boxplots. . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Stripplot, a one-dimensional scatterplot.. . . . . . . . . . . 41
7.4 Q-Q plot for two sets of data.. . . . . . . . . . . . . . . . . 43
7.5 Dot plot for labeled data.. . . . . . . . . . . . . . . . . . . 45
7.6 Barchart, another display for labeled data.. . . . . . . . . . 47
7.7 Pie chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.8 Normal quantile plot.. . . . . . . . . . . . . . . . . . . . . 51
7.9 Histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.10 One-dimensional density plot.. . . . . . . . . . . . . . . . 55
7.11 Scatterplot matrix.. . . . . . . . . . . . . . . . . . . . . . . 57
7.12 Parallel coordinates plot.. . . . . . . . . . . . . . . . . . . 59
7.13 Contour plot. . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.14 Level plot.. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.15 Wireframe plot.. . . . . . . . . . . . . . . . . . . . . . . . 65
7.16 Scattercloud plot.. . . . . . . . . . . . . . . . . . . . . . . 67

8.1 Multiple plots per page.. . . . . . . . . . . . . . . . . . . . 71
8.2 More on multiple plots per page.. . . . . . . . . . . . . . . 73

9.1 Multipanel conditioning. . . . . . . . . . . . . . . . . . . . 77

v



9.2 Multipanel conditioning with layout.. . . . . . . . . . . . . 81
9.3 Multipanel conditioning and layout (cont.). . . . . . . . . . 82
9.4 Conditioning on discrete values of a numeric variable.. . . . 87
9.5 Conditioning on intervals of a numeric variable.. . . . . . . 89
9.6 Shingles computed from a numeric variable.. . . . . . . . . 91

10.1 Default axis labels and titles.. . . . . . . . . . . . . . . . . 95
10.2 Specifying axis labels and titles.. . . . . . . . . . . . . . . 97
10.3 Specifying axes labels and titles.. . . . . . . . . . . . . . . 99
10.4 Specifying horizontal and vertical scale limits.. . . . . . . . 101
10.5 Finer control on axis ticks and labels.. . . . . . . . . . . . 103
10.6 Default strip labels for numeric conditioning variables.. . . 105
10.7 Default strip labels for categorical conditioning variables.. . 107
10.8 Fine tuning the strip labels.. . . . . . . . . . . . . . . . . . 109

12.1 Passing graphical parameters to panel functions.. . . . . . . 117
12.2 Extending a panel function.. . . . . . . . . . . . . . . . . . 119
12.3 Re-using panel functions in multipanel displays.. . . . . . . 121
12.4 Default panel functions inside other panel functions.. . . . 123
12.5 Using subscripts in a panel function.. . . . . . . . . . . . . 125

13.1 Trellis color settings.. . . . . . . . . . . . . . . . . . . . . 131

14.1 Superposing groups of values in the same data region.. . . . 135
14.2 Specifying superposing plotting symbols.. . . . . . . . . . 137
14.3 Superposing curves in the data region.. . . . . . . . . . . . 139
14.4 Trellis superposition symbols.. . . . . . . . . . . . . . . . 141
14.5 Superposing with other general display functions.. . . . . . 143
14.6 Adding a key or legend to any general display function.. . . 145
14.7 Finer control of keys.. . . . . . . . . . . . . . . . . . . . . 147
14.8 Finer control of keys: adding a border and better spacing.. . 149
14.9 Changing the position of the key.. . . . . . . . . . . . . . . 151
14.10More examples of finer control on keys.. . . . . . . . . . . 153
14.11Superposition of points, text, lines, plus a key.. . . . . . . . 155

15.1 Data structures for making groups from multiple vectors.. . 159
15.2 Converting arrays into data frames.. . . . . . . . . . . . . . 161
15.3 Converting time series into data frames.. . . . . . . . . . . 163

16.1 The loess smooth curve is chopped off in the top panel.. . . 167
16.2 Using a prepanel function.. . . . . . . . . . . . . . . . . . 169

vi



17.1 Multipage layout (page 1).. . . . . . . . . . . . . . . . . . 172
17.2 Multipage layout (page 2).. . . . . . . . . . . . . . . . . . 173
17.3 Squeezing two pages into one.. . . . . . . . . . . . . . . . 175
17.4 Adding space between adjacent rows.. . . . . . . . . . . . 177
17.5 Skipping panels in a multipanel display (page 1).. . . . . . 178
17.6 Skipping panels in a multipanel display (page 2).. . . . . . 180
17.7 Adding page information to a multipanel display (page 1).. 181
17.8 Adding page information to a multipanel display (page 2).. 182

18.1 Color wireframe plot.. . . . . . . . . . . . . . . . . . . . . 185
18.2 Color levelplot. . . . . . . . . . . . . . . . . . . . . . . . . 187
18.3 Dotplot with superposition and key.. . . . . . . . . . . . . 189
18.4 Scatterplot with grids and loess curves.. . . . . . . . . . . . 191
18.5 Scatterplot matrix conditioned by a group variable.. . . . . 193
18.6 Dotplot of a response in a factorial experiment (page 1).. . . 195
18.7 Dotplot of a response in a factorial experiment (page 2).. . . 196
18.8 Dotplot of a response in a factorial experiment (page 3).. . . 197
18.9 Dotplot of a response in a factorial experiment (page 4).. . . 198
18.10Dotplot of a response in a factorial experiment (page 5).. . . 199
18.11Rfs plot.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
18.12Multiple trellis plots on one page.. . . . . . . . . . . . . . 203
18.13Multipanel wireframe plot.. . . . . . . . . . . . . . . . . . 205

vii



Acknowledgements

The visualization methods of Trellis Graphics and the design and imple-
mentation of the S-PLUS code resulted from several years of hard running
by Rick Becker, Bill Cleveland, and Ming Shyu at AT&T Bell Laboratories
(now AT&T Research and Bell Labs). At MathSoft, Stephen Kaluzny took
the baton pass with great skill and integrated the system into S-PLUS. More
recently, Linda Clark at Bell Labs has joined the team, using her substantial
skills to develop new applications, test the code, and maintain connections
with users.

viii



Chapter 1

About Trellis Graphics

Making graphs is very basic to data analysis. Whether you use the leading
edge of statistical methods, or whether you want to quickly see the main
features of your data, graphs are a must. They are the single most powerful
class of tools for analyzing data.

Trellis Graphics is a new system for making graphs, written using the
core S-PLUS graphics functions. The Trellis software has many exciting
features, some of them quite glitzy, but the true measure of a visualization
system is how much it enables you to learn from your data. So in this chapter
we will begin with two sets of data. Then we will discuss features.

1



2 CHAPTER 1. ABOUT TRELLIS GRAPHICS

1.1 Discovering the Morris Mistake

Figure1.1is a Trellis display of data from an agricultural field trial to study
the crop barley. At six sites in Minnesota, ten varieties of barley were grown
in each of two years. The data are the yields for all combinations of site,
variety, and year, so there are 6�10�2= 120 observations. In figure1.1,
each panel displays the 20 yields at a single site.

The barley experiment was run in the 1930s. The data first appeared
in a 1934 report published by the experimenters. Since then, the data have
been analyzed and re-analyzed. R. A. Fisher presented the data for five of
the sites in his classic book,The Design of Experiments. Publication in the
book made the data famous, and many others subsequently analyzed them,
usually to illustrate a new statistical method.

Then in the early 1990s, the data were visualized by Trellis Graphics.
The result was a big surprise. Through 60 years and many analyses, an
important happening in the data had gone undetected. Figure1.1shows the
happening, which occurs at Morris. For all other sites, 1931 produced a
significantly higher overall yield than 1932. The reverse is true at Morris.
But most importantly, the amount by which 1932 exceeds 1931 at Morris is
similar to the amounts by which 1931 exceeds 1932 at the other sites. Either
an extraordinary natural event, such as disease or a local weather anomaly,
produced a strange coincidence, or the years for Morris were inadvertently
reversed. More Trellis displays, a statistical modeling of the data, and some
background checks on the experiment led to the conclusion that the data
are in error. But it was Trellis displays such as figure1.1 that provided the
“Aha!” which led to the conclusion.



1.1. DISCOVERING THE MORRIS MISTAKE 3

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Waseca

Barley Yield (bushels/acre)

o o1932 1931

Figure 1.1: Discovering the Morris mistake.



4 CHAPTER 1. ABOUT TRELLIS GRAPHICS

1.2 Seeing the Sunspot Cycles

The top panel of figure1.2graphs the yearly sunspot numbers from 1849 to
1924. The aspect ratio, the height of the data region of the graph divided by
the width, is 1.0. An aspect ratio of 1.0 is what you might expect to see as
a default in cases where aspect ratio has not been considered. But the graph
fails to reveal an important property of the cycles. In the bottom panel, the
data are graphed again, but this time the aspect ratio has been chosen by an
algorithm in Trellis Graphics calledbanking to 45�. Now the property is
revealed. The sunspot cycles typically rise more rapidly than they fall; this
behavior is pronounced for the cycles with high peaks, is less pronounced
for those with medium peaks, and disappears for those cycles with the low-
est peaks. In the top panel, the aspect ratio of 1.0 prevents an accurate visual
decoding of the slopes of the line segments connecting successive observa-
tions. In the bottom panel, banking allows a more accurate visual decoding
of the slopes.



1.2. SEEING THE SUNSPOT CYCLES 5

0

50

100

150

1750 1800 1850 1900

Sunspot Number vs. Year

0

150

1750 1800 1850 1900

Sunspot Number vs. Year

Figure 1.2: Seeing the sunspot cycles.



6 CHAPTER 1. ABOUT TRELLIS GRAPHICS

1.3 Trellis Features

Trellis Graphics is a large leap forward in helping you to understand the
structure of your data, to understand the properties of models fitted to your
data, and to understand how well such models describe the structure of your
data. Here are a few of its many new features.

Multipanel Conditioning

Figure1.1illustratesmultipanel conditioning: each panel of the figure shows
the dependence of yield on variety, conditional on year and site. Multipanel
conditioning is an exceptionally powerful visualization tool for studying
the dependence of a response on two or more explanatory variables. It is
particularly effective for ferreting out interactions. The panels are laid out
into columns, rows, and pages. Figure1.1 has only one page, but for large
datasets, conditioning can result in a large number of panels, so more than
one page is needed. This layout of panels is reminiscent of a garden trellis-
work, and hence, the name “Trellis” Graphics.

Banking to 45�

Selecting the aspect ratio, or shape, of a graph to maximize the accuracy of
our visual decoding of information was an outstanding problem of statistical
graphics for decades. The solution, a breakthrough in data display, has been
implemented in Trellis Graphics. Banking to 45� chooses the aspect ratio
to center the absolute values of the slopes of selected line segments on 45�.
Perceptual experiments have shown that this maximizes the accuracy of our
visual decoding of the relative values of the slopes.

Automation

Trellis Graphics employs automation methods that save you time by auto-
matically selecting rendering aspects—for example, multipanel layout, line
types, plotting symbols, colors, and character sizes—to achieve effective
visual perception of the structure of data. These automation methods are
tuned to the graphics device you are using.



1.4. TRELLIS AND THE CORE S-PLUS GRAPHICS 7

Tailoring Trellis Displays to Your Data

Still, even though our automation methods work well, you will want to alter
displays.

You can alter what goes in the data region of your graph by altering
a panel function, a simple procedure that describes what the panel display
method should be. And you can alter panel functions to produce completely
new types of displays tailored to the needs of your data.

You have very delicate control over labels and scales if you need it. Yet
this control is direct and easy to exert.

1.4 Trellis and the Core S-PLUS Graphics

The core S-PLUS graphics is a collection of low-level drawing functions
and graphics parameter settings. The low-level functions draw graphical
elements. For example,points() , draws plotting symbols andlines()
draws lines. The parameter settings govern the details of how graphical
elements are rendered. For example,pch = "+" sets the plotting symbol
to a plus sign.

Trellis Graphics employs the core graphics in two ways. First, Trellis
has been implemented using the core graphics. Second, when you write a
panel function to tailor the display to your data, you use features of the core
graphics; typically, these are very simple features, considerably simpler than
the Trellis implementation, which used just about every feature of the core.

1.5 Trellis vs. the Old S-PLUS Graphics

Since the very beginning of S-PLUS there has been a collection of high-level
graphics functions that are used to display graphs. Examples areplot() ,
qqnorm() , andpersp() . These routines, like Trellis Graphics, are also
implemented using the core graphics.

Trellis Graphics provides more functionality than the old high-level ca-
pabilities; there are many new ways to display data, such as multipanel
conditioning. It has also greatly improved some of the old display meth-
ods. For example,wireframe() does a better job of 3-D rendering than
persp() . Trellis Graphics also has a better mechanism for the details of
rendering graphs—aspect ratio, plotting symbols, colors, line types, panel
layouts, coordinated scales on different graphs, and so forth. The defaults



8 CHAPTER 1. ABOUT TRELLIS GRAPHICS

work better and users can now make changes with much more effective and
predictable results.



Chapter 2

About This User’s Manual

2.1 What Does thisManual Cover?

This User’s Manualprovides an introduction to Trellis Graphics Versions
2.0 and 2.1. TheManualis not a guide for earlier versions of Trellis Graph-
ics.

TheManualwas meant to be read from the beginning to teach you how
to use Trellis. It was also meant to serve as a reference while you are using
Trellis; the Table of Contents should be helpful for locating sections that
describe the feature in which you are interested.

2.2 What You Need to Know About the Rest of
S-PLUS to Use Trellis Graphics?

You can employ Trellis Graphics to do quite useful things with just a min-
imum of knowledge of the rest of S-PLUS. All you need to get started is a
knowledge of the material in chapters 1-5, 7, and 10-11 ofA Gentle Intro-
duction to S-PLUS, one of the manuals available from MathSoft.

2.3 Other Reading About Trellis

This Manual is available in both color and black-and-white versions on the
World Wide Web at

http://cm.bell-labs.com/stat/project/trellis/

9

http://cm.bell-labs.com/stat/project/trellis/


10 CHAPTER 2. ABOUT THISUSER’S MANUAL

ThisUser’s Manualdoes not show you examples of the use of Trellis to
analyze data, complete with problem description, data description, analysis,
and conclusions. Data analysis is discussed inThe Visual Design and Con-
trol of Trellis Displayby Rick Becker, Bill Cleveland, and Ming Shyu. This
document is also available at the above Web site.

Even more examples can be found in the bookVisualizing Databy Bill
Cleveland. It was written at a time when Trellis Graphics was in its infancy,
so not all of today’s capabilities are discussed, but the examples it does have
are presented in great detail. The book, along with the related book,The
Elements of Graphing Data, is available from the publisher, Hobart Press,
at books@hobart.com.

2.4 Some Important Conventions Used in this
Manual

S-PLUS commands and expressions, names of S-PLUS objects, and the
arguments of S-PLUS functions appear in bold. For example, in thisManual
we will make use of a data framegas , which has two numeric variables,
NOx andE. Later we will use the functionxyplot() and its argument
formula= to make a scatterplot ofNOxagainstE:

xyplot(formula = gas$NOx ˜ gas$E)

In the previous paragraph we used two other conventions. The name of
the function that makes the scatterplot is actuallyxyplot , but we write it
asxyplot() to signal that this S-PLUS object is a function. Similarly, the
argument isformula , but we write it asformula= to signal that we are
making reference to an argument.

2.5 Data Sets

In this Manual, a number of datasets are used as examples. In addition,
Trellis Graphics contains functions that draw graphs to show how the system
works; these functions use datasets. The datasets in these examples are
contained in either the Trellis library or other S-PLUS databases, or are
computed by commands given in theManual.



2.6. CODE FOR THE EXAMPLES IN THISMANUAL 11

2.6 Code for the Examples in ThisManual

There are many examples in thisManual. The code for drawing a display is
given in the same section as the discussion of the display.



12 CHAPTER 2. ABOUT THISUSER’S MANUAL



Chapter 3

Getting Started

3.1 trellis.device()

You need to have a graphics device on which to draw. If you have not
specified a device, but you execute a function that draws a graph, then a
color screen device is automatically set up for you.

The two devices that come up automatically can also be specified di-
rectly with trellis.device() . On Windows the command is

trellis.device(win.graph)

On UNIX the command is

trellis.device(motif)

For some UNIX systems, there is another screen device,openlook .
You can send Trellis graphs to a printer. Also, you can set up multiple

devices; for example, you might have two devices that are graphics windows
on your screen and one device that is a printer. Information is given about
this in chapter11.

WARNING: If you have used the old S-PLUS graphics, then you will
know that you set up devices in a different way. For example, on Windows,
you set up the screen device by

win.graph()

If you do this by mistake, you will find the Trellis graphs are not ren-
dered nearly as well because the graphical parameters of the core S-PLUS
graphics will not be customized to the device as they are when you use
trellis.device() .

13



14 CHAPTER 3. GETTING STARTED

3.2 dev.off()

You turn off a graphics device by the function

dev.off()

or just be quitting from S-PLUS.

3.3 Trellis Objects: print.trellis() and update()

Trellis display functions return objects of classtrellis . The expression

xyplot(formula = gas$NOx ˜ gas$E)

draws a graph on the graphics device. The expression

foo <- xyplot(formula = gas$NOx ˜ gas$E)

saves the graph infoo but does not draw it. If you then type

foo

the graph is drawn.
It is the print method for trellis objects that sends a graph to a device. For

the example just given, typingfoo causes S-PLUS to useprint(foo)
to display the graph. The reason for mentioning this is that you must some-
times explicitly useprint(foo) —when the graph is made from a func-
tion or from a source file.

Having graphs stored as objects can make changing a display much sim-
pler, especially when the display goes through a series of small changes, a
frequent occurrence since data display is relentlessly iterative. The function
update() changes Trellis objects. For example,

foo <- update(foo, main = "Dependence of NOx on E")

adds a title to the graph stored earlier infoo and stores the result back in
foo .



3.4. EXAMPLE FUNCTIONS 15

3.4 Example Functions

The example functions in the Trellis library draw displays to show you the
Trellis capabilities and a bit about how Trellis works. The wordexample.
begins the names of all of the example functions. Figure3.1shows the result
of executing one of these functions:

example.normal.qq()



16 CHAPTER 3. GETTING STARTED

60

65

70

75

Bass 2

-2 -1 0 1 2

Bass 1

Tenor 2

60

65

70

75

Tenor 1

60

65

70

75

Alto 2 Alto 1

Soprano 2

60

65

70

75

Soprano 1

-2 -1 0 1 2

Unit Normal Quantile

H
ei

gh
t (

in
ch

es
)

Figure 3.1: Normal QQ plot by voice.



3.5. ONLINE DOCUMENTATION 17

3.5 Online Documentation

The online help for Trellis Graphics contains a lot of detail. There is online
help for any function in thisManual. For example,

?xyplot

documentsxyplot() . The general display functions discussed in chap-
ter7 have many common arguments, so there is special online help for these
arguments. Use

?trellis.args

to get information about arguments for the 2-D displays, and

?trellis.3d.args

to see argument help for the 3-D displays. Finally, you can see a list of all
of the example functions using the online help:

?trellis.examples



18 CHAPTER 3. GETTING STARTED



Chapter 4

A Roadmap of Trellis Graphics

4.1 General Display Functions

The Trellis library has a collection ofgeneral display functionsthat draw
different types of graphs. For example,xyplot() makes x-y plots,
dotplot() makes dot plots, andwireframe() makes 3-D wireframe
displays. The functions aregeneralbecause they have the full capability of
Trellis Graphics including multipanel conditioning.

The general display functions are introduced in chapter7.

4.2 Common Arguments
There are a set of common arguments that all general display functions em-
ploy. The usage of some of these arguments varies, but each has a common
purpose across all functions. Many of the general display functions also
have arguments that are specific to the types of graphs that they draw.

The common arguments, which appear in the Table of Contents, are
discussed in many chapters.

4.3 Panel Functions

Panel functions are a critical aspect of Trellis Graphics. They make it easy
to tailor displays to your data even when the displays are quite complicated
ones with many panels.

The data region of a panel on a graph resulting from a general display
function is a rectangle that just encloses the data. The sole responsibility
for drawing in a data region is given to a panel function that is an argument

19



20 CHAPTER 4. A ROADMAP OF TRELLIS GRAPHICS

of the general display function. The other arguments of the general dis-
play function manage the superstructure of the graph—scales, labels, boxes
around the data region, and keys. The panel function manages the symbols,
lines, and so forth that encode the data in the data regions.

Panel functions are discussed in chapter12.

4.4 Core S-PLUS Graphics

Trellis Graphics is implemented in the core S-PLUS graphics. Also, when
you write a panel function you use functions and graphics parameters from
the core.

Some Core S-PLUS graphics features are discussed in chapter12.

4.5 Devices and Settings

You need an output device to see a graph. The specification of a screen
device was introduced in chapter3. Of course, you also want to send graphs
to printers and to files. Trellis Graphics allows you to do this in many ways.

Sending graphs to files and printers is discussed in chapter11.
Trellis Graphics has many settings for graph rendering details—plotting

symbols, colors, line types and so forth— that are automatically chosen
depending on the device you select.

Chapter13discusses the Trellis settings.

4.6 Data Structures

The general display functions take in data just like many of the S-PLUS
modeling functions such aslm() , aov() , glm() , and loess() . This
means that there is a heavy reliance on data frames. The Trellis library
contains several functions that change data structures of certain types to a
data frame, which makes it easier to pass the data on to the general display
functions (or, in fact, on to the modeling functions).

Chapter15discusses these functions that create data frames.



Chapter 5

Giving Data to General Display
Functions

For a graphics function to draw a graph, it needs to know the data on which
the drawing is based. This chapter is about arguments to the Trellis drawing
functions that allow you to specify the data.

21



22CHAPTER 5. GIVING DATA TO GENERAL DISPLAY FUNCTIONS

5.1 A Data Set: gas

The data framegas contains two variables from an industrial experiment
with 22 runs in which the concentrations of oxides of nitrogen (NOx) in
the exhaust of an engine were measured for different settings of equivalence
ratio (E).

> names(gas)
[1] "NOx" "E"
> dim(gas)
[1] 22 2

5.2 formula=

The functionxyplot() makes an x-y plot, a graph of two numerical vari-
ables; the result might be scattered points, curves, or both.xyplot() has
its own section in chapter7, but for now we will use it to illustrate how to
specify data.

Figure5.1 is a scatterplot ofgas$NOx againstgas$E :

xyplot(formula = gas$NOx ˜ gas$E)

The argumentformula= specifies the variables that are to be graphed. In
this case they aregas$NOx andgas$E . For xyplot() , the variable to
the left of thẽ goes on the vertical axis, and the variable to the right of the
˜ goes on the horizontal axis. The formulagas$NOx ˜ gas$E is read as
gas$NOx “is graphed against”gas$E .



5.2. FORMULA= 23

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

gas$E

ga
s$

N
O

x

Figure 5.1: Simple X-Y plot.



24CHAPTER 5. GIVING DATA TO GENERAL DISPLAY FUNCTIONS

The use offormula= here is the same as that in the S-PLUS statistical
modeling functions such aslm andaov . To the left or right of thẽ you
can use any S-PLUS expression. For example, if you want to graph the log
base 2 ofgas$NOx, you can use the formula

log(gas$NOx,base=2) ˜ gas$E

The argumentformula= is a special one in Trellis Graphics. It is
always the first argument of a general display function such asxyplot() .
We can omit typingformula= provided the formula is the first argument.
Thus the expression

xyplot(gas$NOx ˜ gas$E)

also produces figure5.1. formula= is the only argument that should be
given by position; all others must be given by name.

Certain single-symbol operators that perform functions in S-PLUS have
a special meaning in the formula language (e.g.,+, * , / , | , and : ), al-
though Trellis, as we will see, uses only* and| . If you want to use any of
these operators for their conventional meaning in any formula expression—
for example, if you want to use* as multiplication—you must put the ex-
pression inside the identity functionI() unless it is already given as an
argument to a function. Here is an example:

log(2*gas$NOx,base=2) ˜ I(2*gas$E)

We useI() on the right of the formula to protect against the* in 2*gas$E ,
but not on the left because2*gas$NOx sits inside a function.

5.3 data=

One annoyance in the use of the above formulas is that we had to continually
refer to the data framegas . This is not necessary if we attachgas to the
search list of databases. We can draw figure5.1by

attach(gas)
xyplot(NOx ˜ E)

Another possibility is to use the argumentdata= :

xyplot(NOx ˜ E, data = gas)

In this case, the variables ofgas are available for use informula= just
during the execution ofxyplot() . The effect is the same as



5.3. DATA= 25

attach(gas)
xyplot(NOx ˜ E)
detach(gas)

The use ofdata= has another benefit. In the call toxyplot() we see
explicitly that the dataframegas is being used; this can be helpful for un-
derstanding, at some future point, how the graph was produced.



26CHAPTER 5. GIVING DATA TO GENERAL DISPLAY FUNCTIONS

5.4 subset=

Suppose you want to redo figure5.1and omit the observations for whichE
is 1.1 or greater. You could do this by

xyplot(NOx[E < 1.1] ˜ E[E < 1.1], data = gas)

But it is a nuisance to repeat the logical subsetting,E < 1.1 . And the
nuisance would be much greater if there were many variables in the formula
instead of just two. It is typically easier to use the argumentsubset=
instead:

xyplot(NOx ˜ E, data = gas, subset = E < 1.1)

The result is shown in figure5.2. The argumentsubset= can be a logical
or numerical vector.



5.4. SUBSET= 27

2

3

4

5

0.7 0.8 0.9 1.0 1.1

E

N
O

x

Figure 5.2: Simple X-Y plot with subset specification.



28CHAPTER 5. GIVING DATA TO GENERAL DISPLAY FUNCTIONS

5.5 Data Frames

You can keep variables as vectors and draw Trellis displays without using
data frames. Still, data frames are very convenient. But datasets are often
stored, at least initially, in data structures other than data frames, so we need
ways to go from data structures of various types to data frames. Functions
to do this are discussed in Chapter15.



Chapter 6

Aspect Ratio

6.1 The Aspect Ratio of a Graph is a Critical
Factor

The aspect ratio of a graph, the height of a panel data region divided by
its width, is a critical factor in determining how well a data display shows
the structure of the data. See chapter1 for an example where choosing
the aspect ratio to carry out banking to 45� shows information in the data
that cannot be seen if the graph is square, that is, has an aspect ratio of
1. More generally, any time we graph a curve, or a scatter of points with
an underlying pattern that we want to assess, controlling the aspect ratio is
vital. One advance of Trellis Graphics is the direct control of the aspect
ratio through the argumentaspect= .

29



30 CHAPTER 6. ASPECT RATIO

6.2 aspect=

You can useaspect= to set the ratio to a specific value. In figure6.1, the
aspect ratio has been set to 3/4:

xyplot(NOx ˜ E, data = gas, aspect = 3/4)



6.2. ASPECT= 31

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

Figure 6.1: Setting the aspect ratio.



32 CHAPTER 6. ASPECT RATIO

Settingaspect = "xy" banks line segments to 45�. Here is how it
works. Supposex andy are data points to be plotted. Consider the line
segments that connect successive points. The aspect ratio is chosen so that
the absolute values of the slopes of these segments are centered on 45�. This
is done in figure6.2by the expression

xyplot(NOx ˜ E, data = gas, aspect = "xy")

We have used the data themselves in this example to carry out banking,
just to illustrate how it works. The resulting aspect ratio is about 0.4. Ordi-
narily, though, we should bank based on a smooth underlying pattern in the
data; that is, we should bank based on the line segments of a fitted curve.
You can do that with Trellis Graphics as well; an example will be given in
chapter16.



6.2. ASPECT= 33

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

Figure 6.2: Banking to 45 degrees.



34 CHAPTER 6. ASPECT RATIO



Chapter 7

General Display Functions

Eachgeneral display functiondraws a particular type of graph. For exam-
ple, dotplot() makes dot plots,wireframe() makes 3-D wireframe
displays,histogram() makes histograms, andxyplot() makes x-y
plots. This chapter describes a collection of general display functions.

7.1 A Data Set: fuel.frame

The data framefuel.frame contains five variables that measure charac-
teristics of 60 automobile models:

> names(fuel.frame)
[1] "Weight" "Disp." "Mileage" "Fuel" "Type"
> dim(fuel.frame)
[1] 60 5

The variables are weight, displacement of the engine, fuel consumption in
miles per gallon, fuel consumption in gallons per mile, and a classification
into type of vehicle. The first four variables are numeric. The fifth variable
is a factor:

> table(fuel.frame$Type)
Compact Large Medium Small Sporty Van

15 3 13 13 9 7

35



36 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.2 xyplot()

We have already seenxyplot() in action in many of our previous ex-
amples. This function is a basic graphical method—graphing one set of
numerical values on a vertical scale against another set of numerical values
on a horizontal scale.

Figure7.1 is a scatterplot of mileage against weight:

xyplot(Mileage ˜ Weight, data = fuel.frame,
aspect = 1)

The variable on the left of thẽ goes on the vertical, or y, axis and the
variable on the right goes on the horizontal, or x, axis.



7.2. XYPLOT() 37

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

Figure 7.1: X-Y plot with unit aspect ratio.



38 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.3 bwplot()

The box and whisker plot, or box plot, is a very clever invention of John
Tukey that is widely used for comparing the distributions of several datasets.

Figure7.2 is a box plot of mileage classified by vehicle type:

bwplot(Type ˜ Mileage, data = fuel.frame,
aspect = 1)

The factorType is on the left of the formula because it goes on the vertical
axis and the numeric vectorMileage is on the right because it goes on the
horizontal axis.



7.3. BWPLOT() 39

Compact

Large

Medium

Small

Sporty

Van

20 25 30 35

Mileage

Figure 7.2: Simple boxplots.



40 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.4 stripplot()

A strip plot, sometimes called a one-dimensional scatterplot, is similar to a
box plot in general layout but the individual data points are shown instead
of the box plot summary.

Figure7.3 is a stripplot:

stripplot(Type ˜ Mileage, data = fuel.frame,
aspect = 1, jitter = T)

Setting jitter = TRUE causes some random noise to be added verti-
cally to the points to alleviate the overlap of the plotting symbols. When
jitter = FALSE , the default, the points for each level lie on a horizon-
tal line.



7.4. STRIPPLOT() 41

Compact

Large

Medium

Small

Sporty

Van

20 25 30 35

Mileage

Figure 7.3: Stripplot, a one-dimensional scatterplot.



42 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.5 qq()

The quantile-quantile plot, or q-q plot, is an extremely powerful tool for
comparing the distributions of two sets of data. The idea is quite simple;
quantiles of one dataset are graphed against corresponding quantiles of the
other dataset.

The variablefuel.frame$Type has five levels:

> table(fuel.frame$Type)
Compact Large Medium Small Sporty Van

15 3 13 13 9 7

Figure7.4is a q-q plot comparing the quantiles of mileage for compact cars
with the corresponding quantiles for small cars:

qq(Type ˜ Mileage, data = fuel.frame, aspect = 1,
subset = (Type == "Compact")|(Type == "Small"))

The factor on the left side of the formula must have two levels. The default
labels for the two scales are the names of the levels.



7.5. QQ() 43

25

30

35

25 30 35

Compact

S
m

al
l

Figure 7.4: Q-Q plot for two sets of data.



44 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.6 dotplot()

The dot plot, which displays data with labels, provides highly accurate vi-
sual decodings, typically far more accurate than other methods for display-
ing labeled data.

Let us compute the mean mileage for each vehicle type:

> mileage.means <- tapply(fuel.frame$Mileage,
+ fuel.frame$Type, mean)
> mileage.means

Compact Large Medium Small Sporty Van
24.13333 20.33333 21.76923 31 26 18.85714

Figure7.5is a dotplot of the log base 2 means:

dotplot(names(mileage.means) ˜
log(mileage.means, base=2),

aspect = 1, cex = 1.25)

The argumentcex is passed to the panel function to change the size of the
dot of the dot plot in this case; more on this in chapter12.

Notice that the vehicle types in figure7.5 are ordered, from bottom to
top, by the order of the elements of the vectormileage.means . So
to change the order on the graph we simply change the order of the vec-
tor elements. For example, if you wanted the graph to show the values
from smallest to largest going from bottom to top, you could redefine
mileage.means :

mileage.means <- sort(mileage.means)

and then make the plot.



7.6. DOTPLOT() 45

•

•

•

•

•

•

Compact

Large

Medium

Small

Sporty

Van

4.4 4.6 4.8

log(mileage.means, base = 2)

Figure 7.5: Dot plot for labeled data.



46 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.7 barchart()

Overall, dot plots are a more effective display method than bar charts, avoid-
ing some of the perceptual problems of bar charts. Still, there are circum-
stances where bar charts are harmless.

Figure7.6 is a bar chart of the mileage means (without logs):

barchart(names(mileage.means)˜mileage.means,
aspect = 1)



7.7. BARCHART() 47

Compact

Large

Medium

Small

Sporty

Van

20 22 24 26 28 30

mileage.means

Figure 7.6: Barchart, another display for labeled data.



48 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.8 piechart()

Pie charts have severe perceptual problems. Experiments in graphical per-
ception have shown that compared with dot plots, they convey information
far less reliably. But if you want to display some data, and perceiving the
information is not so important, then a pie chart is fine.

Figure7.7 is a pie chart of the mileage means:

piechart(names(mileage.means)˜mileage.means,
aspect = .5)



7.8. PIECHART() 49

Compact

La
rg

e

Medium

Small

S
porty

Van

Figure 7.7: Pie chart.



50 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.9 qqmath()

Normal probability plots, or normal q-q plots, are the single most powerful
tool for determining if the distribution of a set of measurements is well
approximated by the normal distribution.

Figure7.8 is a normal probability plot of the mileages for small cars:

qqmath(˜Mileage, data = fuel.frame, aspect = 1,
subset = (Type == "Small"))

That is, the ordered data are graphed against quantiles of the standard nor-
mal distribution.

Note that the formula forqqmath() is used in a way unlike any of the
previous examples. Only one data object appears in the formula, to the right
of the˜ , because this graphical method utilizes only one data object.

qqmath() can also make probability plots for other distributions. It
has an argumentdistribution whose input is any function that com-
putes quantiles. The default isqnorm . If we used

qqmath(˜Mileage, data = fuel.frame, aspect = 1,
subset = (Type == "Small"),
distribution = qexp)

the result would be an exponential probability plot. Note that the name of
the function appears as the default label on the horizontal scale of the plot.



7.9. QQMATH() 51

26

28

30

32

34

36

-1 0 1

qnorm

M
ile

ag
e

Figure 7.8: Normal quantile plot.



52 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.10 histogram()

A histogram can be useful for showing the distribution of a single set of
data, but two or more histograms are typically not nearly as powerful as a
box plot or q-q plot for comparing data distributions.

Figure7.9 is a histogram of mileage:

histogram(˜Mileage, data = fuel.frame, aspect = 1,
nint = 10)

The argumentnint determines the number of intervals. The histogram
algorithm chooses the intervals to make the bar widths be simple numbers
while trying to make the number of intervals as close tonint as possible.



7.10. HISTOGRAM() 53

0

5

10

15

20

20 25 30 35

Mileage

P
er

ce
nt

 o
f T

ot
al

Figure 7.9: Histogram.



54 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.11 densityplot()

Like histograms, density plots can be of help in understanding the distribu-
tion of a single set of data, but box plots and q-q plots typically give more
incisive comparisons of distributions.

Figure7.10is a density plot of mileage:

densityplot( ˜ Mileage, data = fuel.frame,
aspect = "xy", width = 5)

The argumentwidth controls the width of the smoothing window in the
same units as the data, mpg here; as the width increases, the smoothness
increases.



7.11. DENSITYPLOT() 55

0.0

0.02

0.04

0.06

0.08

0.10

15 20 25 30 35 40

Mileage

D
en

si
ty

Figure 7.10: One-dimensional density plot.



56 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.12 splom()

The scatterplot matrix is an exceedingly powerful tool for displaying mea-
surements of three or more variables.

Figure7.11is a scatterplot matrix of the variables infuel.frame :

splom( ˜ fuel.frame)

Note that the factorType has been converted to a numeric variable and
plotted just like the other variables, which are numeric. The six levels of
Type simply take the values 1 to 6 in this conversion.



7.12. SPLOM() 57

2000 2500

3000 3500

3000

3500

2000

2500

Weight

100 150 200

200 250 300

200

250

300

100

150

200Disp.

20 25

30 35

30

35

20

25

Mileage

3.0 3.5 4.0

4.5 5.0 5.5

4.5

5.0

5.5

3.0

3.5

4.0Fuel

C
om

pa
ct

La
rg

e

M
ed

iu
m

S
m

al
l

S
po

rt
y

V
an

Small

Sporty

Van

Compact

Large

Medium
Type

Figure 7.11: Scatterplot matrix.



58 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.13 parallel()

Parallel coordinates are an interesting method, but it is unclear at the time
of this writing whether they have the power to uncover structure that is not
more readily apparent using other graphical methods.

Figure 7.12 is a parallel coordinates display of the variables in
fuel.frame :

parallel( ˜ fuel.frame)



7.13. PARALLEL() 59

Weight

Disp.

Mileage

Fuel

Type

Min Max

Figure 7.12: Parallel coordinates plot.



60 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.14 A Data Set: gauss

To further illustrate the general display routines, we will compute a function
of two variables over a grid.

datax <- rep(seq(-1.5, 1.5, length=50), 50)
datay <- rep(seq(-1.5, 1.5, length=50), rep(50, 50))
dataz <- exp(-(dataxˆ2 + datayˆ2 + datax*datay))
gauss <- data.frame(datax, datay, dataz)

Thusdataz is the exponential of a quadratic function defined over a 50
by 50 grid; in other words, the surface is proportional to a bivariate normal
density.

7.15 contourplot()

Contour plots are helpful displays for studying a function,f (x;y), when we
have no need to study the conditional dependence off on x giveny or of f
on y givenx. Conditional dependence is revealed far better by multipanel
conditioning.

Figure7.13is a contour plot of the gaussian surface:

contourplot(dataz ˜ datax * datay, data = gauss,
aspect = 1, at = seq(.1, .9, by = .2))

The argumentat specifies the values as which the contours are to be com-
puted and drawn. If the argument is not specified, reasonable default values
are chosen.



7.15. CONTOURPLOT() 61

0.1

0.1

0.3

0.5

0.7
0.9

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

datax

da
ta

y

Figure 7.13: Contour plot.



62 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.16 levelplot()

Level plots are also helpful displays for studying a function,f (x;y). They
are no better than contour plots when the function is simple, but often are
better when there is much fine detail, for example, many peaks and valleys.

Figure7.14is a level plot of the gauss surface:

levelplot(dataz ˜ datax * datay, data = gauss,
aspect = 1, cuts = 6)

The values of the surface are encoded by color, a gray scale in this case. For
devices with full color, the scale goes from pure magenta to white and then
to pure cyan. If the device does not have full color, a gray scale is used.

For a levelplot, the range of the function values is divided into intervals
and each interval is assigned a color. A rectangle centered on each grid
point is given the color of the interval containing the value of the function
at the grid point. In figure7.14there are six intervals. The argumentcuts
specifies the number of breakpoints between intervals.



7.16. LEVELPLOT() 63

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

datax

da
ta

y

0.2

0.4

0.6

0.8

Figure 7.14: Level plot.



64 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.17 wireframe()

Wireframe displays can be quite useful for displayingf (x;y) when we have
no need to study conditional dependence, which is revealed far better by
multipanel conditioning.

Figure7.15is a 3-D wireframe plot of the gauss surface:

wireframe(dataz ˜ datax * datay, data = gauss,
drape = F, screen = list(z = 45, x = -60, y = 0))

The arrows point in the direction of increasing values of the variables.
The argumentscreen is a list. The three components of the list—x ,

y , andz—refer to screen axes. The first component is horizontal and the
second is vertical, both in the plane of the screen. The third component is
perpendicular to the screen. The surface is rotated about these axes in the
order given in the list. Here is how it worked for figure7.15. The surface
began withdatax as the horizontal screen axis,datay as the vertical, and
dataz as the perpendicular. The origin was at the lower left in the back.
First, the surface was rotated 45� about the perpendicular screen axis, where
a positive rotation is counterclockwise. Then, there was a�60� rotation
about the horizontal screen axis, where a negative rotation brings the picture
at the top of the screen away from the viewer and the bottom toward the
viewer. Finally, there was no rotation about the vertical screen axis; had
there been one with a positive number of degrees, then the left side of the
picture would have moved toward the viewer and the right away.

If drape = T , a color encoding is added to the surface using the same
encoding method of the level plot.



7.17. WIREFRAME() 65

dataxdatay

dataz

Figure 7.15: Wireframe plot.



66 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.18 cloud()

A static 3-D plot of a scatter of points is typically not effective because
the depth cues are insufficient to give a strong 3-D effect. Still, on rare
occasions, such a plot can be useful, sometimes as a presentation or teaching
tool.

Figure7.16 is a 3-D scatterplot of the first three variables in the data
framefuel.frame :

cloud(Mileage ˜ Weight * Disp., data = fuel.frame,
screen = list(z = -30, x = -60, y = 0),
xlab = "W",
ylab = "D",
zlab = "M")

The behavior of the argumentscreen is the same as that forwireframe .
We have used three additional arguments to specify scale labels; such label-
ing will be discussed in chapter10.



7.18. CLOUD() 67

W

D

M

Figure 7.16: Scattercloud plot.



68 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.19 The Display Functions and Their Formulas

The following listing of the general display functions and their formulas
is instructive because it shows certain conventions and consistencies in the
formula mechanism:

Graph One Numerical Variable Against Another

xyplot(numeric1 ˜ numeric2)

Compare the Sample Distributions of Two or More Sets of Data

bwplot(factor ˜ numeric)
stripplot(factor ˜ numeric)
qq(factor ˜ numeric)

Graph Measurements with Labels

dotplot(character ˜ numeric)
barchart(character ˜ numeric)
piechart(character ˜ numeric)

Graph the Sample Distribution of One Set of Data

qqmath(˜numeric)
histogram(˜numeric)
densityplot(˜numeric)

Graph Multivariate Data

splom(˜data.frame)
parallel(˜data.frame)

Graph a Function of Two Variables Evaluated on a Grid

contourplot(numeric1 ˜ numeric2 * numeric3)
levelplot(numeric1 ˜ numeric2 * numeric3)
wireframe(numeric1 ˜ numeric2 * numeric3)

Graph Three Numerical Variables

cloud(numeric1 ˜ numeric2 * numeric3)



Chapter 8

Arranging Several Graphs On
One Page

Several graphs, made separately by Trellis display functions, can be dis-
played on a single page. There is one restriction. None of the individual
graphs may be a multipanel conditioning display with more than one page.

69



70 CHAPTER 8. ARRANGING SEVERAL GRAPHS ON ONE PAGE

8.1 print()

Figure8.1shows two graphs arranged on one page:

attach(fuel.frame)
box.plot <- bwplot(Type ˜ Mileage)
scatter.plot <- xyplot(Mileage ˜ Weight)
detach()

print(box.plot, position = c(0,0,1,.4), more = T)
print(scatter.plot, position = c(0,.35,1,1))

The argumentposition specifies the position of each graph on the page
using a page coordinate system in which the lower left corner of the page
is (0, 0) and the upper right corner is (1, 1). Thegraph rectangleis the
portion of the page allocated to a graph.position takes a vector of four
numbers; the first two numbers are the coordinates of the lower left corner
of the graph rectangle, and the second two numbers are the coordinates of
the upper right corner. The argumentmore= has been give a value ofT,
which says that more drawing is coming.

Notice that in the above example the graph rectangles overlap somewhat.
Here is the reason. The graph contains margins (empty space) around the
edges of the graph. But in arranging graphs on a page, we might well want
to overlap margin space to use the page space as efficiently as possible.



8.1. PRINT() 71

Compact

Large

Medium

Small

Sporty

Van

20 25 30 35

Mileage

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

Figure 8.1: Multiple plots per page.



72 CHAPTER 8. ARRANGING SEVERAL GRAPHS ON ONE PAGE

Figure8.2illustrates another argument,split= , that provides a differ-
ent method for arranging the plots on the page:

attach(fuel.frame)
scatter.plot <- xyplot(Mileage ˜ Weight)
other.plot <- xyplot(Mileage ˜ Disp.)
detach()

print(scatter.plot, split = c(1,1,1,2), more = T)
print(other.plot, split = c(1,2,1,2))

split= takes a vector of four values. The last two define an array of
subregions in the graphics region. In our example, the array has one column
and two rows for both plots. The first two values ofsplit= prescribe the
subregion in which the current plot is to be drawn.



8.1. PRINT() 73

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

20

25

30

35

100 150 200 250 300

Disp.

M
ile

ag
e

Figure 8.2: More on multiple plots per page.



74 CHAPTER 8. ARRANGING SEVERAL GRAPHS ON ONE PAGE



Chapter 9

Multipanel Conditioning

9.1 A Data Set: barley

The data framebarley contains data from the barley experiment discussed
in section1.1.

> names(barley)
[1] "yield" "variety" "year" "site"

The first of these four variables is numeric, and the remaining three are fac-
tors. The experiment was run in the state of Minnesota in the 1930s. At six
sites, ten varieties of barley were grown in each of two years. The data col-
lected for the experiment are the yields in bushels/acre for all combinations
of site, variety, and year, so there are 6�10�2= 120 observations.

9.2 About Multipanel Display

Figure9.1 uses multipanel conditioning to display the barley data. Each
panel displays the yields of the ten varieties for one year at one site; variety
is graphed along the vertical scale and yield is graphed along the horizontal
scale. For example, the lower left panel displays values of variety and yield
for Grand Rapids in 1932. Thepanel variablesare yield and variety and the
conditioning variablesare year and site.

9.3 formula=

Figure9.1was made by the following command:

75



76 CHAPTER 9. MULTIPANEL CONDITIONING

dotplot(variety ˜ yield | year * site,
data = barley)

The| is read as “given”. Thus the formula is read asvariety “is graphed
against”yield “given” year andsite . Thus a simple use offormula=
creates a complex multipanel display.



9.3. FORMULA= 77

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Grand Rapids

20 30 40 50 60

•

•

•

•

•
•

•

•
•

•
1931

Grand Rapids

•

•

•

•

•
•

•

•
•

•

Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38

Trebi

1932
Duluth

•

•

•

•

•
•

•

•
•

•
1931

Duluth

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

1932
University Farm

•

•

•

•

•
•

•

•
•

•
1931

University Farm

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland
Glabron

No. 457
Wisconsin No. 38

Trebi

1932
Morris

•

•

•

•

•
•

•

•
•

•
1931
Morris

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Crookston

•

•

•

•

•
•

•

•
•

•
1931

Crookston

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Waseca

•

•

•

•

•
•

•

•
•

•
1931

Waseca

20 30 40 50 60

yield

Figure 9.1: Multipanel conditioning.



78 CHAPTER 9. MULTIPANEL CONDITIONING

9.4 Columns, Rows, and Pages

A multipanel conditioning display is a three-way rectangular array laid out
into columns, rows, and pages. In figure9.1 there are two columns, six
rows and one page. The numbers of columns, rows, and pages are selected
by an algorithm that attempts of fill up as much of the graphics region as
possible subject to certain constraints. As we will see in section9.6, there
is an argumentlayout= that allows you to choose the numbers.

9.5 Packet Order and Panel Order

In the above formula, the conditioning variableyear appeared first and
site appeared second. This gives an explicit ordering to the conditioning
variables. Each of these variables is a factor with levels:

> levels(barley$year)
[1] "1932" "1931"

> levels(barley$site)
[1] "Grand Rapids" "Duluth" "University Farm"
[4] "Morris" "Crookston" "Waseca"

The levels of each factor are ordered by their order of appearance in the
levels attribute. As we will discuss shortly, we can control the order by
making the factor anordered factor.

A packetis information sent to a panel for display. For figure9.1, each
packet includes the values of variety and yield for a particular combination
of year and site. Packets are ordered by the orderings of the conditioning
variables and their levels; the levels of the first conditioning variable vary the
fastest, the levels of the second conditioning variable vary the next fastest,
and so forth. For figure9.1, the order of the packets is

1932 Grand Rapids
1931 Grand Rapids
1932 Duluth
1931 Duluth
1932 University Farm
1931 University Farm
1932 Morris
1931 Morris
1932 Crookston



9.6. LAYOUT= 79

1931 Crookston
1932 Waseca
1931 Waseca.

The panels of a multipanel display are also ordered. The bottom left
panel is panel one. From there we move fastest through the columns, next
fastest through the rows, and the slowest through the pages. The panel or-
dering rule is like a graph, not like a table; the origin is at the lower left and
as we move either from left to right or from bottom to top, the panel order
increases. The following shows the panel order for figure9.1, which has
two columns, six rows, and one page:

11 12
9 10
7 8
5 6
3 4
1 2

In Trellis Graphics, packets are assigned to panels according to the
packet order and the panel order. Packet 1 goes in panel 1, packet 2 goes into
panel 2 and so forth. In figure9.1, the two orderings result in the year vari-
able changing along the columns and the site variable changing along the
rows. Note that as the levels for one of these factors increase, the darkened
bars in the strip label for the factor move from left to right.

9.6 layout=

Multipanel conditioning is a powerful tool for understanding how a response
depends on two or more explanatory variables. In such an analysis, it is
typically important to make as many displays as necessary to have each
explanatory variable appear at least once as a panel variable. In figure9.1
variety, an explanatory variable, appears as a panel variable.

We will make a new display with site as a panel variable. The argument
layout= specifies the numbers of columns, rows, and pages:

dotplot(site ˜ yield | year * variety,
data = barley, layout = c(2,5,2))



80 CHAPTER 9. MULTIPANEL CONDITIONING

The result is shown in figure9.2, the first page, and in figure9.3, the second
page.

If we do not specifylayout= , Trellis Graphics chooses the numbers of
columns, rows, and pages by a layout algorithm. The algorithm takes into
account the aspect ratio, the number of packets, the number of conditioning
variables, and the number of levels of each conditioning variable. It chooses
the numbers to maximize the size of the graph within the graphics region.



9.6. LAYOUT= 81

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Svansota

20 30 40 50 60

•

•

•
•

•
•

1931
Svansota

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
No. 462

•

•

•
•

•
•

1931
No. 462

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Manchuria

•

•

•
•

•
•

1931
Manchuria

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
No. 475

•

•

•
•

•
•

1931
No. 475

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Velvet

•

•

•
•

•
•

1931
Velvet

20 30 40 50 60

yield

Figure 9.2: Multipanel conditioning with layout.



82 CHAPTER 9. MULTIPANEL CONDITIONING

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Peatland

20 30 40 50 60

•

•

•
•

•
•

1931
Peatland

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Glabron

•

•

•
•

•
•

1931
Glabron

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
No. 457

•

•

•
•

•
•

1931
No. 457

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Wisconsin No. 38

•

•

•
•

•
•

1931
Wisconsin No. 38

•

•

•
•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

1932
Trebi

•

•

•
•

•
•

1931
Trebi

20 30 40 50 60

yield

Figure 9.3: Multipanel conditioning and layout (cont.)



9.7. MAIN-EFFECTS ORDERING: REORDER.FACTOR() 83

9.7 Main-Effects Ordering: reorder.factor()

For the barley data, the explanatory variables are categorical. The dataset
for each is a factor. (Since there are only two years, the year variable is
treated as a factor rather than a numeric vector.) For each factor, consider
the median yield for each level. For example, for variety, the level medians
are

> variety.medians <- tapply(barley$yield,
+ barley$variety, median)

> variety.medians
Svansota No. 462 Manchuria No. 475 Velvet Peatland

28.55 30.45 30.96667 31.06667 32.15 32.38334
Glabron No. 457 Wisconsin No. 38 Trebi

32.4 33.96666 36.95 39.2

The barley displays in figures9.1to9.3use an important display method:
main-effects ordering of levels. This greatly enhances our ability to perceive
effects. Consider figure9.1. On each panel, the varieties are ordered from
bottom to top by the variety medians; Svansota has the smallest median and
Trebi has the largest. The site panels have been ordered from bottom to top
by the site medians; Grand Rapids has the smallest median and Waseca has
the largest. Finally, the year panels are ordered from left to right by the year
medians; 1932 has the smaller median and 1931 has the larger.

This median ordering is achieved by making the dataset for each ex-
planatory variable an ordered factor, where the levels are ordered by the
medians. For example, supposevariety started out as a factor without
the median ordering. We get the ordered factor through the following:

barley$variety <- ordered(barley$variety,
levels = names(sort(variety.medians)))

Main effects ordering is so important and is carried out so often that
Trellis Graphics includes a functionreorder.factor() to carry it out.
Here, it is used to reordervariety :

barley$variety <- reorder.factor(barley$variety,
barley$yield, median)

The first argument is the factor to be reordered, the second is the data on
whose main effects the reordering is based, and the third argument is the
function to be applied to the second argument to compute main effects.



84 CHAPTER 9. MULTIPANEL CONDITIONING

9.8 Controlling the Pages of a Multipage Dis-
play

If a multipage display is sent to a screen device, the default behavior is for
the pages to be drawn in succession; in other words, a page is overwritten
by the drawing of its successor. This gives you little time to look at any but
the last page. You can control the page flow by

par(ask = TRUE)

S-PLUS queries you before each page is drawn; hit return to go to the next
page.

The problem with this method is that you cannot go backward to look
at an earlier page. Another solution, however allows it. Simply specify
postscript as the device, and then use a PostScript screen reader such
as Ghostview to look at the output. Such readers allow easy movement
through PostScript pages.

9.9 Summary: How to Lay Out a Multipanel
Display

To lay out a multipanel display in a certain way you specify the following:

� An ordering of the conditioning variables by the order you enter them
in the argumentformula=

� An ordering of the levels of each factor, possibly by creating an or-
dered factor

� The number of columns, rows, and pages through the argument
layout= .

9.10 A Data Set: ethanol

The data frameethanol contains three variables from an industrial exper-
iment with 88 runs:

> names(ethanol)
[1] "NOx" "C" "E"
> dim(ethanol)
[1] 88 3



9.10. A DATA SET: ETHANOL 85

The concentrations of oxides of nitrogen (NOx) in the exhaust of an engine
were measured for different settings of compression ratio (C) and equiva-
lence ratio (E). These measurements were part of the same experiment that
produced the measurements in the data framegas introduced in section5.1.



86 CHAPTER 9. MULTIPANEL CONDITIONING

9.11 Conditioning On Discrete Values of a Nu-
meric Variable

For the barley data, the explanatory variables are factors, so it is natural to
condition on the levels of each factor. This is not the case for the ethanol
data; both explanatory variables, C and E, are numeric. Suppose for the
ethanol data, that we want to graph NOx against E given C. The variable
C has five unique values; in other words, the variable, while numeric, is
discrete:

> table(ethanol$C)
7.5 9 12 15 18

22 17 14 19 16

It makes sense then to condition on the unique values ofC. Figure9.4does
this:

xyplot(NOx ˜ E | C, data = ethanol, aspect = 1/2)

When a numeric variable is used as a conditioning variable in the ar-
gumentformula= , then conditioning is automatically carried out on the
sorted unique values. In other words, the levels of the variable in such a case
are the unique values. The order of the levels is from smallest to largest. For
C, the first level is 7.5, the second is 9, and so forth. Thus the first packet
includes values of NOx and E for C = 7.5, the second packet includes the
values for C = 9, and so forth. As before, the packets fill the panels accord-
ing to the packet order and the panel order. In figure9.4, the values of C,
which are indicated by the thin darkened bars in the strip labels, increase
from bottom to top.



9.11. CONDITIONING ON DISCRETE VALUES OF A NUMERIC VARIABLE87

1

2

3

4
C

0.6 0.8 1.0 1.2

1

2

3

4
C

1

2

3

4
C

1

2

3

4
C

1

2

3

4
C

E

N
O

x

Figure 9.4: Conditioning on discrete values of a numeric variable.



88 CHAPTER 9. MULTIPANEL CONDITIONING

9.12 Conditioning On Intervals of a Numeric Vari-
able

For the ethanol data we graphed NOx against E given C in figure9.4. We
would like to see NOx against C given E as well. But E varies in a nearly
continuous way; there are 83 unique values out of total of 88 values. Clearly
we cannot condition on single values.

Instead, we condition on intervals. This is done in figure9.5. On each
panel, NOx is graphed against C for E in an interval. The intervals, which
are portrayed by the darkened bars in the strip, are ordered from low to high,
so as we go left to right and bottom to top through the panels, the intervals
go from low to high. The intervals overlap. The next section describes how
they were created and the expression that produced the graph.

9.13 equal.count()

The nine intervals in figure9.5were produced by theequal count algorithm:

GIVEN.E <- equal.count(ethanol$E, number = 9,
overlap = 1/4)

There are two inputs to the algorithm, the number of intervals and a target
fraction of points to be shared by each pair of successive intervals. In fig-
ure9.5, the inputs are 9 and 1/4. The algorithm picks interval endpoints that
are values of the data; the left endpoint of the lowest interval is the minimum
of the data, and the right endpoint of the highest interval is the maximum
of the data. The endpoints are chosen to make the counts of points in the
intervals as nearly equal as possible, and the fractions of points shared by
successive intervals as close to the target fraction as possible.



9.13. EQUAL.COUNT() 89

1

2

3

4

GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E

1

2

3

4

GIVEN.E

8 10 12 14 16 18

C

N
O

x

Figure 9.5: Conditioning on intervals of a numeric variable.



90 CHAPTER 9. MULTIPANEL CONDITIONING

The command that produced figure9.5 is

xyplot(NOx ˜ C | GIVEN.E, data = ethanol,
aspect = 2.5)

The aspect ratio was chosen to be 2.5 to approximately bank the underlying
pattern of the points to 45�. Notice that the automatic layout algorithm
chose five columns and two rows.

9.14 Shingles: shingle()

The result ofequal.count() is an object of classshingle . The class
is named “shingle” because of the overlap, like shingles on a roof. First, a
shingle contains the numerical values of the variable and can be treated as
an ordinary numeric variable:

> range(GIVEN.E)
[1] 0.535 1.232
> range(ethanol$E)
[1] 0.535 1.232

Second, a shingle has the intervals attached as an attribute. There is a plot
method, a special Trellis function, that displays the intervals. Figure9.6
shows the intervals ofGIVEN.E :

plot(GIVEN.E)



9.14. SHINGLES: SHINGLE() 91

1

2

3

4

5

6

7

8

9

0.6 0.8 1.0 1.2

GIVEN.E

P
an

el

Figure 9.6: Shingles computed from a numeric variable.



92 CHAPTER 9. MULTIPANEL CONDITIONING

You can use the functionlevels() to extract the intervals from the
shingle:

> levels(GIVEN.E)
min max

0.535 0.686
0.655 0.761
0.733 0.811
0.808 0.899
0.892 1.002
0.990 1.045
1.042 1.125
1.115 1.189
1.175 1.232

A shingle can be specified directly by the functionshingle() . For
example, the following creates 5 intervals of equal width and no overlap for
the variableethanol$E :

> endpoints <- seq(min(ethanol$E), max(ethanol$E),
+ length = 6)
> GIVEN.E <- shingle(ethanol$E, intervals =
+ cbind(endpoints[-6],endpoints[-1]))
> levels(GIVEN.E)

min max
0.5350 0.6744
0.6744 0.8138
0.8138 0.9532
0.9532 1.0926
1.0926 1.2320

The argumentintervals= is a two-column matrix; the first column is
the left endpoints of the intervals and the right column is the right endpoints
of the intervals.



Chapter 10

Scales and Labels

The general display functions presented in chapter7 have arguments that
specify the scales and labels of graphs. These arguments are discussed in
this chapter.

93



94 CHAPTER 10. SCALES AND LABELS

10.1 xlab=, ylab=, main=, sub=

Figure10.1is a scatterplot of NOx against E for thegas data, which were
introduced in section5.1:

xyplot(NOx ˜ E, data = gas, aspect = 1/2)



10.1. XLAB=, YLAB=, MAIN=, SUB= 95

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

Figure 10.1: Default axis labels and titles.



96 CHAPTER 10. SCALES AND LABELS

In figure 10.1, the label for the horizontal, or x, scale, and the label
for the vertical, or y, scale are taken from the names used in the argument
formula= . We can specify these scale labels as well as a main title at the
top and a subtitle at the bottom. This is illustrated in figure10.2:

xyplot(NOx ˜ E, data = gas, aspect = 1/2,
xlab = "Equivalence Ratio",
ylab = "Oxides of Nitrogen",
main = "Air Pollution",
sub = "Single-Cylinder Engine")



10.1. XLAB=, YLAB=, MAIN=, SUB= 97

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

Equivalence Ratio

O
xi

de
s 

of
 N

itr
og

en

Air Pollution

Single-Cylinder Engine

Figure 10.2: Specifying axis labels and titles.



98 CHAPTER 10. SCALES AND LABELS

Each of these four label arguments can also be a list. The first com-
ponent of the list is a new character string for the text of the label. The
other components specify the size, font, and color of the text. The compo-
nentcex specifies the size;font , a positive integer, specifies the font; and
col , a positive integer, specifies the color. Figure10.3changes the sizes of
the title and subtitle:

xyplot(NOx ˜ E, data = gas, aspect = 1/2,
xlab = "Equivalence Ratio",
ylab = "Oxides of Nitrogen",
main = list("Air Pollution", cex = 2),
sub = list("Single-Cylinder Engine", cex = 1.25))



10.1. XLAB=, YLAB=, MAIN=, SUB= 99

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

Equivalence Ratio

O
xi

de
s 

of
 N

itr
og

en

Air Pollution

Single-Cylinder Engine

Figure 10.3: Specifying axes labels and titles.



100 CHAPTER 10. SCALES AND LABELS

10.2 xlim=, ylim=

In Trellis, the upper value of the scale line for a numeric variable is the max-
imum of the data to be plotted plus 4% of the range of the data. Similarly,
the lower value of the scale line for a numeric variable is the minimum of
the data to be plotted minus 4% of the range of the data. The 4% helps
prevent the data values from running into the edge of the plot.

We can alter the extremes of the horizontal scale line by the argument
xlim= , a vector of two values. The first value replaces the minimum of the
data in the above procedure, and the second value replaces the maximum.
Similarly, we can alter the vertical scale byylim= .

In figures10.1 to 10.3, NOx is graphed along the vertical scale. The
limits of this variable are

> range(gas$NOx)
[1] 0.537 5.344

In figure10.4, the values 0 and 6 have been included in the vertical scale:

xyplot(NOx ˜ E, data = gas, aspect = 1/2,
ylim = c(0, 6))



10.2. XLIM=, YLIM= 101

0

1

2

3

4

5

6

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

Figure 10.4: Specifying horizontal and vertical scale limits.



102 CHAPTER 10. SCALES AND LABELS

10.3 scales=, pscales=

The argumentscales= affects tick marks and tick mark labels. In fig-
ure10.4there are seven tick marks and tick mark labels along the vertical
scale and six along the horizontal. In figure10.5, scales= is used to re-
duce the number of ticks and increase the size of the tick labels:

xyplot(NOx ˜ E, data = gas, aspect = 1/2,
ylim = c(0, 6),
scales = list(cex = 2, tick.number = 4))

The argumentscales= is a list. The list componentcex affects the size.
The list componenttick.number affects the number, but it is just a sug-
gestion; an algorithm goes off and tries to find tick values that are pretty,
while trying to come as close as possible to the specified number.

We can also specify the tick marks and labels separately for each scale.
The specification

scales = list(cex = 2,
x = list(tick.number = 4),
y = list(tick.number = 10))

changescex on both scales, buttick.number has been set to 4 for
the horizontal, or x, scale, and has been set to 10 for the vertical, or y,
scale. Thus the rule is this: specifications for the horizontal scale appear in
scales= as a componentx that is itself a list, specifications for the vertical
scale appear inscales= as a componenty that is a list, and specifications
for both scales appear as remaining components ofscales= .

There is an exception to the behavior ofscales= . The two 3-D gen-
eral display functionswireframe() andcloud() currently do not ac-
cept changes to each scale separately; in other words, componentsx y ,
and z cannot be used. The general display functionpiechart() has
no tick marks and labels, soscales= does not apply at all. The general
display functionsplom has many scales, so the same delicate control is
not available, but more limited control is available through the argument
pscales= .



10.3. SCALES=, PSCALES= 103

0

2

4

6

0.8 1.0 1.2
E

N
O

x

Figure 10.5: Finer control on axis ticks and labels.



104 CHAPTER 10. SCALES AND LABELS

10.4 3-D Display: aspect=

The aspect ratio, the height of a panel data region divided by the width, is
controlled byaspect= . This argument was introduced in chapter6 for
2-D displays. The behavior ofaspect= for the two 3-D general display
functions,wireframe() and cloud() , is somewhat different. Since
there are three axes, we must specify two aspect ratios to specify the shape of
the 3-D box around the data. Suppose the formula and the aspect arguments
are

formula = z ˜ x * y, aspect = c(1, 2)

Then the ratio of the length of the y-axis to the length of the x-axis is 1, and
the ratio of the length of the z-axis to the length of the x-axis is 2.

10.5 Changing the Text in Strip Labels

The default text in the strip label for a numeric conditioning variable is the
name of the variable. This is illustrated in figure10.6, which displays the
ethanol data introduced in section9.10:

xyplot(NOx ˜ E | C, data = ethanol)



10.5. CHANGING THE TEXT IN STRIP LABELS 105

1

2

3

4

C

0.6 0.8 1.0 1.2

C

C

1

2

3

4

C

1

2

3

4

C

E

N
O

x

Figure 10.6: Default strip labels for numeric conditioning variables.



106 CHAPTER 10. SCALES AND LABELS

The default text in the strip label of a factor conditioning variable is the
name of the factor level for the panel. This is illustrated in figure10.7, which
displays the barley data introduced in section9.1.

dotplot(variety ˜ yield | year * site,
data = barley)

The name of the factor, for example,site , does not appear because seeing
the names of the levels is typically enough to convey the name of the factor.

Thus the text comes from the names given to variables and factor levels
in the datasets that are plotted. If we want to change the text we can change
the names. For example, if we want to change the long label “University
Farm” to “U. Farm” then we can change the names of the levels of the
factorsite :

> levels(barley$site)
[1] "Grand Rapids" "Duluth" "University Farm"
[4] "Morris" "Crookston" "Waseca"

> levels(barley$site)[3] <- "U. Farm"



10.5. CHANGING THE TEXT IN STRIP LABELS 107

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Grand Rapids

20 30 40 50 60

•

•

•

•

•
•

•

•
•

•
1931

Grand Rapids

•

•

•

•

•
•

•

•
•

•

Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38

Trebi

1932
Duluth

•

•

•

•

•
•

•

•
•

•
1931

Duluth

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

1932
University Farm

•

•

•

•

•
•

•

•
•

•
1931

University Farm

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland
Glabron

No. 457
Wisconsin No. 38

Trebi

1932
Morris

•

•

•

•

•
•

•

•
•

•
1931
Morris

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Crookston

•

•

•

•

•
•

•

•
•

•
1931

Crookston

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

1932
Waseca

•

•

•

•

•
•

•

•
•

•
1931

Waseca

20 30 40 50 60

yield

Figure 10.7: Default strip labels for categorical conditioning variables.



108 CHAPTER 10. SCALES AND LABELS

10.6 Strip Label Text Size: par.strip.text=

The size, font, and color of the text in the strip labels can by changed by the
argumentpar.strip.text= , a list whose components are the parame-
terscex for size,font for the font, andcol for the color. For example,
we can make huge strip labels by

par.strip.text = list(cex = 2)

10.7 Programming Strip Labels: strip=

The argumentstrip= allows very delicate control of what is put in the
strip labels. One usage is to remove the strip labels altogether:

strip = F

Another is to control the inclusion of names of conditioning variables in
strip labels. This is illustrated in Figure10.8:

dotplot(variety ˜ yield | year * site, data = barley,
strip = function(...)

strip.default(..., strip.names = c(T,T))
)

The argumentstrip.names= takes a logical vector of length two. The
first element tells whether or not the names of factors should be included
along with the names of the levels of the factor, and the second element tells
whether or not the names of shingles should be included. The default is
c(F,T) .



10.7. PROGRAMMING STRIP LABELS: STRIP= 109

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

year: 1932
site: Grand Rapids

20 30 40 50 60

•

•

•

•

•
•

•

•
•

•
year: 1931

site: Grand Rapids

•

•

•

•

•
•

•

•
•

•

Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38

Trebi

year: 1932
site: Duluth

•

•

•

•

•
•

•

•
•

•
year: 1931
site: Duluth

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

year: 1932
site: University Farm

•

•

•

•

•
•

•

•
•

•
year: 1931

site: University Farm

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland
Glabron

No. 457
Wisconsin No. 38

Trebi

year: 1932
site: Morris

•

•

•

•

•
•

•

•
•

•
year: 1931
site: Morris

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria

No. 475
Velvet

Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

year: 1932
site: Crookston

•

•

•

•

•
•

•

•
•

•
year: 1931

site: Crookston

•

•

•

•

•
•

•

•
•

•

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

year: 1932
site: Waseca

•

•

•

•

•
•

•

•
•

•
year: 1931

site: Waseca

20 30 40 50 60

yield

Figure 10.8: Fine tuning the strip labels.



110 CHAPTER 10. SCALES AND LABELS



Chapter 11

Devices

11.1 Three Kick Methods

You can send Trellis graphs to a printer directly or to a file for later printing.
But when you issue a command to do this, the sending does not happen
immediately. You need to give the system a kick. There are three ways
to kick: (1) send another graph; (2) turn off the device with the command
dev.off() ; (3) end your S-PLUS session withq() .

11.2 trellis.device()

The functiontrellis.device() specifies a device and enables Trellis
Graphics to tailor rendering details such as color, symbols, and line types
to the specified device. We saw in section3.1 that it can be used to specify
screen devices. As we will see, it can be used to specify devices for sending
directly to a printer or for sending to a file for later printing.

11.3 Sending to a Printer or a File

On UNIX, the command

trellis.device(postscript, onefile = FALSE)

sets up a PostScript device for direct sending to the printer. A graph goes
to the printer when you kick the system. Addingcolor = TRUE to the
argument list specifies color PostScript.

On UNIX, the command

111



112 CHAPTER 11. DEVICES

trellis.device(postscript,
onefile = FALSE,
print.it = FALSE,
file = "greatgraph.ps")

sets up a PostScript device for sending to the file greatgraph.ps. The file
writing is completed after you kick. But with this device specification, if you
issue two commands to draw two separate graphs, the first will overwrite the
second. Again, addingcolor = TRUE to the argument list specifies color
PostScript.

On Windows, you can specify various types of printers. The command

trellis.device(win.printer,
printer.type = "postscript")

specifies a PostScript printer for direct sending. A graph goes to the printer
when you kick the system. Addingcolor = TRUE to the argument list
specifies color PostScript. For PCL printers use:

trellis.device(win.printer, printer.type = "pcl")

However, while you can get color printing on PCL printers by changing
arguments to Trellis functions, there is not yet an argumentcolor to cus-
tomize PCL for color printing.

On Windows, the command

trellis.device(win.printer,
printer.type = "postscript",
format = "printer",
file = "graph.ps")

writes PostScript to the file graph.ps, after the kick. Similarly,

trellis.device(win.printer,
printer.type = "pcl",
format="printer",
file = "graph.pcl")

does the same for PCL. Note that if you issue two commands to draw two
separate graphs without changing the device in any way, the first will over-
write the second.

You can also create a Windows metafile that can be inserted into docu-
ments:



11.4. DEVICES FOR THISMANUAL 113

trellis.device(win.printer,
format = "placeable metafile",
file = "graph.wmf")

On Windows, you can print hardcopies by using the S-PLUS File–Print
menu, but this typically produces an undesirable graph because Trellis Graph-
ics cannot customize the rendering to your hard copy device.

11.4 Devices for thisManual

The graphs for thisManualwere produced on UNIX using thepostscript
device. The device used for the black and white graphs was

trellis.device(postscript)

and the device used for color graphs was

trellis.device(postscript, color = T)

11.5 Multiple Devices: dev.list(), dev.cur(), dev.set()

S-PLUS allows you to run multiple devices. A common usage is to have
a screen device and a hardcopy device, the first for experimenting and the
second for sending what you hope will be a finished product.

Suppose you are on UNIX. Then

trellis.device(motif)
trellis.device(postscript)

sets up a screen and a hardcopy device. Only one device is current, and that
one receives your graphics commands. For our example,postscript is
current since it was set up last. You can change the current device:

> dev.set(which = 2)
motif

2

Now motif is current. You can show the current device:

> dev.cur()
motif

2



114 CHAPTER 11. DEVICES

You can see the list of all active devices:

> dev.list()
motif postscript

2 3

Finally, as we have seen,dev.off() turns off the current device and
shows the new current device:

> dev.off()
postscript

3

On Windows, you can use these functions, but you can also use the
Tools-Graphics Device menu to list, select, and close graphics devices, in-
cluding Trellis devices. (You cannot open a Trellis device from this menu,
but you can manipulate it once it is open.)



Chapter 12

Panel Functions

The data region of a panel on a Trellis display is the rectangular region
where the data are plotted. Apanel functionhas the sole responsibility for
drawing in the data regions produced by a general display function. The
panel function is given as an argument of the general display function. The
other arguments of the general display function manage the superstructure
of the graph—scales, labels, boxes around the data region, and keys. The
panel function manages the symbols, lines and so forth that encode the data
in the data region.

Every general display function has a default panel function. In all exam-
ples given so far in thisManual, the default panel function has been doing
the drawing.

12.1 How to Change the Rendering in the Data
Region

You can change what is drawn in the data region by one of two mechanisms.
First, a default panel function has arguments. You can change the rendering
by using these arguments; in fact, you can give them to the general display
function, which will pass them along to the panel function. Second, you can
write your own panel function.

115



116 CHAPTER 12. PANEL FUNCTIONS

12.2 Passing Arguments to a Default Panel Func-
tion

The name of the default panel function for a general display function is
“panel. ” followed by the name of the general function. For example the
default panel function forxyplot() is panel.xyplot() . You can use
S-PLUS online help to see the arguments of a default panel function. For ex-
ample,?panel.xyplot tells you about the panel function forxyplot .

You can give an argument to a panel function by giving it to the gen-
eral display function; the general display function passes it on to the panel
function. In Figure12.1, xyplot() passedpch to panel.xyplot to
specify a “+” as the plotting symbol:

xyplot(NOx ˜ E, data = gas, aspect = 1/2, pch = "+")



12.2. PASSING ARGUMENTS TO A DEFAULT PANEL FUNCTION117

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

++

+

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

Figure 12.1: Passing graphical parameters to panel functions.



118 CHAPTER 12. PANEL FUNCTIONS

12.3 Writing A Panel Function: panel=

If you write your own panel function, you give it to the general display
function as the argumentpanel= . For example, if you have your own
panel functionmypanel() , you specify

panel = mypanel

A panel function is always a function of at least two arguments; the first
two are namedx andy . Suppose, for the gas data, that you want to use
xyplot() to graph NOx against E and use a “+” as the plotting symbol
for all observations except that for which NOx is a maximum, in which case
you want to use “M”. There is no provision forxyplot() to do this, so
you must write your own.

First, let us write the panel function:

panel.special <- function(x,y)
biggest <- y == max(y)
points(x[!biggest], y[!biggest], pch = "+")
points(x[biggest], y[biggest], pch = "M")

The functionpoints() is a core graphics function. It graphs individual
points on a graph. Its first argumentx contains the coordinates of the points
along the horizontal scale, and its second argumenty contains the coordi-
nates of the points along the vertical scale. The third argumentpch gives
the symbol used to display the points.

Figure12.2shows the result of givingpanel.special() toxyplot() .

xyplot(NOx ˜ E, data = gas, aspect = 1/2,
panel = panel.special)



12.3. WRITING A PANEL FUNCTION: PANEL= 119

+

+
+

+
+

+

+

+

+

+

++

+

+ +

+

+

+

++

+

M

1

2

3

4

5

0.7 0.8 0.9 1.0 1.1 1.2

E

N
O

x

Figure 12.2: Extending a panel function.



120 CHAPTER 12. PANEL FUNCTIONS

The panel function for figure12.2also could have been defined as part
of thexyplot() command:

xyplot(NOx ˜ E, data = gas,
aspect = 1/2,
panel = function(x,y)

biggest <- y == max(y)
points(x[!biggest], y[!biggest], pch = "+")
points(x[biggest], y[biggest], pch = "M")

)

12.4 A Panel Function for a Multipanel Display

In most cases, a panel function that is used for a single panel display can
be used for a multipanel display as well. In figure12.3the panel function
panel.special() , just used in figure12.2, is used to show the max-
imum value of NOx on each panel of a multipanel display of the ethanol
data:

xyplot(NOx ˜ E | C, data = ethanol, aspect = 1/2,
panel = panel.special)



12.4. A PANEL FUNCTION FOR A MULTIPANEL DISPLAY 121

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

M

1

2

3

4
C

0.6 0.8 1.0 1.2

+

+
+

+

++

+

+

+

+

+

+
+

+

++

M

1

2

3

4
C

+

+

+

+

+

+

+

+
+ +

+ +

+

M

1

2

3

4
C

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+
+

M

1

2

3

4
C

+

+
+

+

+
+

+

+

+

+

+ +

++

+

M

1

2

3

4
C

E

N
O

x

Figure 12.3: Re-using panel functions in multipanel displays.



122 CHAPTER 12. PANEL FUNCTIONS

12.5 Special Panel Functions

Even if you write your own panel function you might want to use the default
panel function as part of it. This is often true when you want to augment a
standard Trellis panel. Also, Trellis Graphics provides some special purpose
panel functions. One of them ispanel.loess() . It adds smooth curves
to scatterplots.

Figure12.4adds smooth curves to a multipanel display of the ethanol
data:

xyplot(NOx ˜ C | GIVEN.E, data = ethanol,
aspect = 2.5,
panel = function(x, y){

panel.xyplot(x, y)
panel.loess(x, y, span = 1)
}

)

The default panel functionpanel.xyplot() draws the points of the scat-
terplot on each panel. The special panel functionpanel.loess() com-
putes and draws the smooth curves; the argumentspan , the smoothing
parameter, has been specified.



12.5. SPECIAL PANEL FUNCTIONS 123

1

2

3

4

GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E GIVEN.E

8 10 12 14 16 18

GIVEN.E

1

2

3

4

GIVEN.E

8 10 12 14 16 18

C

N
O

x

Figure 12.4: Default panel functions inside other panel functions.



124 CHAPTER 12. PANEL FUNCTIONS

12.6 subscripts=

If you request it, another component of the packet sent to each panel is
the subscripts that tell which original observations make up the the packet.
Knowing these subscripts is helpful for getting the values of other variables
that might be needed for rendering on the panel. In such a case the panel
function argumentsubscripts= contains the subscripts. In figure12.5
the observation numbers have been added to the graph of NOx against E
given C:

xyplot(NOx ˜ E | C, data = ethanol, aspect = 1/2,
panel = function(x, y, subscripts)

text(x, y, subscripts, cex = .75)
)



12.6. SUBSCRIPTS= 125

15

22

23

28

29

38

39

40
49

50

51

57

58

59

60

61

62

63

77

78

80

83
1

2

3

4
C

0.6 0.8 1.0 1.2

6

7

8

20

21

30

36

37

45

46

47

48

69
70

71

79
84

1

2

3

4
C

1

2

3

4

5

9

10

11

12

16
17

67
68

85
1

2

3

4
C

13

18

19

26

27

31

32

33

34

35

52

55

56

72

73

74

75

76

86

1

2

3

4
C

14

24
25

41

42

43

44

53

5464

65

66 81

8287

88

1

2

3

4
C

E

N
O

x

Figure 12.5: Using subscripts in a panel function.



126 CHAPTER 12. PANEL FUNCTIONS

The core graphics functions commonly used in writing panel functions
are

points()
lines()
text()
segments()
polygon()

You can use the S-PLUS online help to see what they do. The core parame-
ters commonly used in writing panel functions are

col
lty
pch
lwd
cex

Use?par for their definitions.



Chapter 13

Panel Functions and the Trellis
Settings

Trellis Graphics, as we have discussed, is implemented using S-PLUS core
graphics, which has controllable graphical parameters that determine the
characteristics of plotted objects. For example, if we want to use a symbol
to show points on a scatterplot, graphical parameters determine the type,
size, font, and color of the symbol.

In Trellis Graphics, the default panel functions for the general display
functions select graphical parameters to render plotted elements as effec-
tively as possible. But because the most desirable choices for one graphics
device can be different from those for another device, the default graphical
parameters are device dependent. These parameters are contained in lists
which we will refer to as the “Trellis settings.” Whentrellis.device()
sets up a graphics device, the Trellis settings are established for that device
and are saved on a special data structure.

When you write your own panel functions, you may want to make use
of the Trellis settings to provide good performance across different devices.
Three functions enable you to access, display, and change the settings for
the current device.trellis.par.get() lets you get settings for use
in a panel function.show.settings() shows graphically the values of
the settings.trellis.par.set() lets you change the settings for the
current device.

13.1 trellis.par.get()

Here is the panel functionpanel.xyplot() :

127



128CHAPTER 13. PANEL FUNCTIONS AND THE TRELLIS SETTINGS

function(x, y, type = "p", cex = plot.symbol$cex,
pch = plot.symbol$pch, font = plot.symbol$font,
lwd = plot.line$lwd, lty = plot.line$lty,
col = if(type == "l") plot.line$col

else plot.symbol$col, ...)

if(type == "l")
plot.line <- trellis.par.get("plot.line")
lines(x, y, lwd = lwd, lty = lty, col = col,

type = type, ...)
else

plot.symbol <- trellis.par.get( "plot.symbol")
points(x, y, pch = pch, font = font, cex = cex,

col = col, type = type, ...)

If the argumenttype is "p" , which means that point symbols are used
to plot the data, then the plotting symbol is defined by the settings list
plot.symbol ; the components of this last are given to the function
points() that draws the symbols. The list is accessed bytrellis.par.get() .



13.2. SHOW.SETTINGS() 129

Here is the listplot.symbol for the color PostScript device:

> trellis.device(postscript, color = T)
> plot.symbol <- trellis.par.get("plot.symbol")
> plot.symbol
$pch:
[1] 1

$col:
[1] 2

$cex:
[1] 0.8

$font:
[1] 1

Thepch of 1 andcol of 2 produce a cyan octagon.
If type is "l" , which means thatlines() is used to plot the data,

then the graphical parameters for the lines are in the settings listplot.line :

> trellis.device(postscript, color = T)
> plot.line <- trellis.par.get("plot.line")
> plot.line
$lwd:
[1] 1

$lty:
[1] 1

$col:
[1] 2

This is a cyan-colored solid line.

13.2 show.settings()

show.settings() displays the graphical parameters in the Trellis set-
tings for the current device. The result for color PostScript is shown in
Figure13.1:

trellis.device(postscript)
show.settings()



130CHAPTER 13. PANEL FUNCTIONS AND THE TRELLIS SETTINGS

Each panel displays one or more settings lists. The names of the settings
appear below the panels. For example, the panel in the third row (from
the top) and first column shows plotting symbols with graphical parameters
plot.symbol and lines with graphical parametersplot.line , and the
panel in the third row and third column shows that the panel function of the
general display functionhistogram() uses the graphical parameters in
bar.fill for the color that shades the bars of a histogram.



13.2. SHOW.SETTINGS() 131

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

superpose.symbol superpose.line strip.background strip.shingle

•
•

•
•

•

dot.[symbol, line] box.[dot, rectangle, umbrella]

Hello

World

add.[line, text] reference.line

plot.[symbol, line] plot.shingle (bar.fill) histogram (bar.fill) barchart (bar.fill)

col = 1co
l =

 2col = 3

col = 4

co
l =

 5 col = 6

col = 7

piechart (pie.fill)

1-100

regions

Figure 13.1: Trellis color settings.



132CHAPTER 13. PANEL FUNCTIONS AND THE TRELLIS SETTINGS

13.3 trellis.par.set()

The Trellis settings for the current device can be changed:

> trellis.device(postscript, color = T)
> plot.symbol <- trellis.par.get("plot.symbol")
> plot.symbol$col
[1] 2
> plot.symbol$col <- 3
> trellis.par.set("plot.symbol", plot.symbol)
> plot.symbol <- trellis.par.get("plot.symbol")
> plot.symbol$col
[1] 3

trellis.par.set() sets an entire Trellis setting list, not just some of
the components. Thus the simplest way to make a change is to get the
current list, alter it, and then save the altered list. The change lasts only as
long as the device continues. If the S-PLUS session is ended the altered
settings are removed.



Chapter 14

Superposing Two or More
Groups of Values on a Panel

One common visualization task is superposing two or more groups of values
in the same data region, encoding the different groups in different ways to
show the grouping. For example, we might graph leaf width against leaf
length for two samples of leaves, one from maple trees and one from oaks,
and use a circle as the plotting symbol for the maples and a plus for the oaks.

Superposition is achieved by the panel functionpanel.superpose() .
In addition, thekey= argument of the general display functions can be used
to show the group encoding.

133



134 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

14.1 panel.superpose()

Superposition is illustrated in Figure14.1which graphs variables from the
data framefuel.frame . For 60 automobiles,Mileage is graphed against
Weight for six types of vehicles described by the factorType :

> table(fuel.frame$Type)
Compact Large Medium Small Sporty Van

15 3 13 13 9 7

The vehicle types are encoded by using different plotting symbols. (Nothing
on the graph indicates which symbol is for which type, but the next section
contains information about drawing a legend, or key.)

The panel functionpanel.superpose() carries out such a super-
position, and was used to create Figure14.1:

xyplot(Mileage ˜ Weight,
data = fuel.frame,
groups = Type,
aspect = 1,
panel = panel.superpose)

The factorType is given to the argumentgroups of xyplot() . But
groups is also an argument ofpanel.superpose() , soType is passed
along to the panel function to be used to determine the plotting symbols.



14.1. PANEL.SUPERPOSE() 135

o

o

o

o

o

o

o

o

oo

o

o

o

o

o o

o

oo

o

o oo o

oo

o

o

o o

o

oo

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo

o

oo

o

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

Figure 14.1: Superposing groups of values in the same data region.



136 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

In Figure14.1, the plotting symbols are the defaults that are set up by
the trellis device functiontrellis.device() ; such trellis settings were
discussed in chapter13. The specific settings used bypanel.superpose()
are discussed later in this section. The default symbols have been chosen to
enhance the visual assembly of each group of points; that is, we want to
effortlessly assemble the plotting symbols of a given type to form a visual
gestalt or whole. If assembly can be performed efficiently then we can com-
pare the characteristics of the data for different automobile types.

You can choose your own plotting symbols. For example, suppose that
in Figure14.1we want to use the first letters of the vehicle types, but with
“S” (for “Small”) replaced by “P” (for “Peewee”) to avoid duplication with
“Sporty”:

mysymbols <- c("C","L","M","P","S","V")

panel.superpose() has an argumentpch= that can be used to specify
the symbols. This is shown in Figure14.2, which results from the expres-
sion:

xyplot(Mileage ˜ Weight,
data = fuel.frame,
aspect = 1,
groups = Type,
pch = mysymbols,
panel = panel.superpose
)

Notice that, again, we specify an argument of the panel function — in this
casepch — by giving it as an argument toxyplot() , which passes it
along to the panel function.



14.1. PANEL.SUPERPOSE() 137

C

C

C

C

C

C

C

C

CC

C

C

C

C

C L

L

LM

M

M MMM

MM

M

M

M M

M

PP

P

P P

P

P

P

P

P

P

P

P

S

S

S

S

S

S

S

S

S

V VV

V

VV

V

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

Figure 14.2: Specifying superposing plotting symbols.



138 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

panel.superpose() will also superpose curves. In Figure14.3, a
line and a quadratic are superposed:

x <- seq(0, 1, length = 50)
linquad <-c(x, xˆ2)
x <- rep(x, 2)
which <- rep(c("linear","quadratic"), c(50,50))

xyplot(linquad ˜ x,
xlab = "Argument",
ylab = "Functions",
aspect = 1,
groups = which,
type = "l",
panel = panel.superpose
)

The argumenttype= controls the method of plotting. Fortype="p" , the
default, the data are rendered by plotting symbols; the default has been used
to produce Figures14.1and14.2. For type="l" , the data are rendered by
lines; this has been used to produce Figure14.3.



14.1. PANEL.SUPERPOSE() 139

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Argument

F
un

ct
io

ns

Figure 14.3: Superposing curves in the data region.



140 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

panel.superpose() uses the graphical parameters in the Trellis
settingsuperpose.symbol for the default plotting symbols. For black
and white postscript, the setting results in different symbol types:

> trellis.device(postscript)
> trellis.par.get("superpose.symbol")
$pch:
[1] "001" "+" ">" "s" "w" "#" " f"

$col:
[1] 1 1 1 1 1 1 1

$cex:
[1] 0.85 0.85 0.85 0.85 0.85 0.85 0.85

$font:
[1] 1 1 1 1 1 1 1

There are seven symbols, providing for up to seven groups. The sym-
bols are shown in the first panel of the top row of Figure14.4, drawn by
trellis.settings() . If there are two groups, the first two symbols
are used; if there are three groups, the first three symbols are used; and so
forth. The setting for the default line types issuperpose.line :

> trellis.par.get("superpose.line")
$lwd:
[1] 1 1 1 1 1 1 1

$lty:
[1] 1 2 3 4 5 6 7

$col:
[1] 1 1 1 1 1 1 1

There are seven line types, shown in the second panel of the top row of
Figure14.4.



14.1. PANEL.SUPERPOSE() 141

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

o o o o o o o

superpose.symbol superpose.line strip.background strip.shingle

•
•

•
•

•

dot.[symbol, line] box.[dot, rectangle, umbrella]

Hello

World

add.[line, text] reference.line

plot.[symbol, line] plot.shingle (bar.fill) histogram (bar.fill) barchart (bar.fill)

col = 1co
l =

 2col = 3

col = 4

co
l =

 5 col = 6

col = 7

piechart (pie.fill)

1-100

regions

Figure 14.4: Trellis superposition symbols.



142 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

panel.superpose can be used with any general display function
where superposing different groups of values makes sense. For example,
we can superpose datasets withxyplot() , as in Figures14.1to 14.3, or
with dotplot() , or with many of the other general display functions. By
achieving superposition through the panel function, we do not need a special
superposition general display function for each type of graphical method,
which makes things much simpler.

Figure14.5is a dot plot of the barley data discussed in chapter1:

barley.plot <- dotplot(variety ˜ yield | site,
data = barley,
panel = function(x, y, ...) {

dot.line <- trellis.par.get("dot.line")
abline(h = unique(y), lwd = dot.line$lwd,

lty = dot.line$lty, col = dot.line$col)
panel.superpose(x, y, ...)
},

groups = year,
layout = c(1, 6), aspect = .5,
xlab = "Barley Yield (bushels/acre)")

barley.plot

On each panel, data for two years are displayed, and the years, 1931 and
1932, are distinguished by different plotting symbols. The plot has been
saved in thetrellis objectbarley.plot for use later on.

For Figure14.5, the general display functiondotplot() has not sent
the factorvariety to the panel function to be they vector for the function,
but rather has sent a numeric vector of values 1 to 10 with 1 corresponding
to the first of the 10 levels of the factor, with 2 corresponding to the sec-
ond level, and so forth. And the display function has sent the values of
yield as the vectorx . The conditioning vector issite ; thus on each
panel there are 20 values ofx and 20 values ofy ; for each level of variety,
there are two values ofx (one for 1931 and one for 1932) and two values
of y , and there are 10 levels of variety. The plotting symbols are drawn by
panel.superpose() at the 20 values ofx andy on each panel.



14.1. PANEL.SUPERPOSE() 143

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Waseca

Barley Yield (bushels/acre)

Figure 14.5: Superposing with other general display functions.



144 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

The panel function for thisdotplot() example is more complicated
than that for thexyplot() examples because, along with superposing the
plotting symbols bypanel.superpose() , the horizontal lines of the
dot plot must be drawn.abline() draws the lines at the unique val-
ues ofy . The characteristics of the line are specified by the Trellis setting
dot.line .

14.2 key=

A key can be added to a Trellis display through the argumentkey= of the
general display functions. The argument is a list. With one exception, the
component names are the names of the arguments of the functionkey() ,
which actually does the drawing of the key, so the values of these compo-
nents are given to the corresponding arguments ofkey() . The exception
is the componentspace= which can leave extra space for a key in the
margins of the display.

key= is easy to use yet is quite powerful; it has the capability to draw
most keys used in practice and many yet to be invented.

Figure14.6adds a key to Figure14.5:

update(barley.plot,
key = list(

points = Rows(superpose.symbol, 1:2),
text = list(levels(barley$year))
)

)

The figure is drawn usingupdate() to alter barley.plot , the ob-
ject that produced Figure14.5. The componenttext of key= is a list
with the year names. The componentpoints is a list with the graphical
parameters of the two symbols used bypanel.superpose to plot the
data. These parameters are from the Trellis settingsuperpose.symbol ,
whichpanel.superpose uses to draw the plotting symbols.



14.2. KEY= 145

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Waseca

Barley Yield (bushels/acre)

o

o
1932
1931

Figure 14.6: Adding a key or legend to any general display function.



146 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

We want to give the componentpoints only the parameters of the
symbols used in Figure14.6, so the functionRows extracts the first two
elements of each component ofsuperpose.symbol :

> trellis.device(postscript)
> Rows(trellis.par.get("superpose.symbol"), 1:2)
$pch:
[1] "o" "+"

$col:
[1] 1 1

$cex:
[1] 1 1

$font:
[1] 1 1

For Figure14.6, the key has two entries, one for each year. If there had
been four years there would have been four entries. Each entry has two
items; as we shall see, we can specify more items if we choose. The order
of the items is the order of specification inkey= ; in the above expression
that draws Figure14.6, points is first andtext is second, so in the key,
the symbol is the first item and then the text is the second item. Had we
specifiedtext first, the symbol would have followed the text in each entry.

In Figure14.6, the two entries, by default, are drawn as an array with one
column and two rows. We can change this by the argumentcolumns= . In
Figure14.7, there are two columns. In addition, we have switched the order
of the symbols and the text:

update(barley.plot,
key = list(

text = list(levels(barley$year)),
points = Rows(superpose.symbol, 1:2),
columns = 2))



14.2. KEY= 147

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Waseca

Barley Yield (bushels/acre)

1932 1931o o

Figure 14.7: Finer control of keys.



148 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

The argumentspace= allocates space for the key in the margins. It
takes one of four values —"top" , "bottom" , "right" , "left" —
allocating the space on the side of the graph described by the value. So far,
it has been allocating space at the top, which is the default, and placing the
key in the allocated space. More will be said aboutspace= later.

In Figure14.7, the default location of the key seems a bit too far from
the rest of the graph. The key has been repositioned in Figure14.8, and a
border has been drawn around it:

update(barley.plot,
key = list(

points = Rows(superpose.symbol, 1:2),
text = list(levels(barley$year)),
columns = 2,
border = 1,
x = .5,
y = 1.02,
corner = c(.5,0)
))

The argumentborder= draws a border; it takes a number that specifies the
color in which the border should be drawn.

The repositioning uses two coordinate systems. The first describes lo-
cations in the rectangle that just encloses the panels of the display, but not
including the tick marks; the lower left corner of this panel rectangle has
coordinates(0;0), and the upper right corner has coordinates(1;1). A lo-
cation in the panel rectangle is specified by the componentsx andy . The
second coordinate system describes locations in the border rectangle of the
key, which is shown when the border is drawn, as in Figure14.7; the lower
left corner of the key rectangle has coordinates(0;0), and the upper right
corner has coordinates(1;1). A location in the border rectangle is specified
by the componentcorner , a vector with two elements, the horizontal and
vertical coordinates. The key is positioned so that the locations specified by
the two coordinate systems are at the same place on the graph.



14.2. KEY= 149

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Waseca

Barley Yield (bushels/acre)

o o1932 1931

Figure 14.8: Finer control of keys: adding a border and better spacing.



150 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

Having two coordinate systems makes it far easier to get the key to a
desired location quickly, often on the first try.

Notice that we specifiedspace= to be "top" in Figure 14.8. The
reason is this: As soon as we specify a value for any of the coordinate
argumentsx , y , or corner , no default space is allocated in any margin
location unless we explicitly use the argumentspace= . In Figures14.6
and14.7, we did not use the coordinate arguments, sospace= defaulted to
"top" .

In Figure14.9, space is allocated to the right.

update(barley.plot,
key = list(

points = Rows(superpose.symbol, 1:2),
text = list(levels(barley$year)),
space = "right"
)

)



14.2. KEY= 151

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Waseca

Barley Yield (bushels/acre)

o

o
1932
1931

Figure 14.9: Changing the position of the key.



152 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

In Figure14.10some changes have been made to Figure14.9. A border
has been drawn, and the key is positioned by putting the upper left corner
of the border rectangle at the same vertical position as the top of the panel
rectangle and at a horizontal position slightly to the right of the right side of
the panel rectangle.

update(barley.plot,
key = list(

text = list(levels(barley$year)),
points = Rows(superpose.symbol, 1:2),
space = "right",
corner = c(0, 1),
x = 1.05,
y = 1,
border = 1
)

)



14.2. KEY= 153

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

Waseca

Barley Yield (bushels/acre)

1932
1931

o

o

Figure 14.10: More examples of finer control on keys.



154 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL

So far we have seen that componentspoints andtext can be used to
create items in key entries. A third component,lines , draws line items. To
illustrate this, let us return to Figure14.1, the first plot in this chapter, which
graphsMileage againstWeight for six types of vehicles. Figure14.11
makes the plot again and adds two loess smooths with two different values
of the smoothing parameterspan :

superpose.line <-
trellis.par.get("superpose.line")

superpose.line$col[3:6] <- 0
superpose.symbol <-

trellis.par.get("superpose.symbol")

xyplot(Mileage ˜ Weight,
data = fuel.frame,
groups = Type,
aspect = 1,
panel = function(x, y, ...){

panel.superpose(x, y, ...)
panel.loess(x, y, span = 1/2,

lwd=superpose.line$lwd[1],
lty=superpose.line$lty[1],
col=superpose.line$col[1])

panel.loess(x, y, span = 1,
lwd=superpose.line$lwd[2],
lty=superpose.line$lty[2],
col = superpose.line$col[2])},

key = list(
transparent = T,
x = .95, y = .95,
corner = c(1,1),
lines = c(Rows(superpose.line, 1:6),

list(size = c(3,3,0,0,0,0))),
text = list(c("Span = 0.5", "Span = 1.0",

rep("", 4))),
points = Rows(superpose.symbol, 1:6),
text = list(levels(fuel.frame$Type))
)

)



14.2. KEY= 155

o

o

o

o

o

o

o

o

oo

o

o

o

o

o o

o

oo

o

o oo o

oo

o

o

o o

o

oo

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo

o

oo

o

20

25

30

35

2000 2500 3000 3500

Weight

M
ile

ag
e

Span = 0.5
Span = 1.0

o

o

o

o

o

o

Compact
Large
Medium
Small
Sporty
Van

Figure 14.11: Superposition of points, text, lines, plus a key.



156 CHAPTER 14. SUPERPOSING GROUPS ON A PANEL



Chapter 15

Data Structures

Trellis Graphics uses the S-PLUS formula language to specify the data for
plotting. This requires the data to be stored in datasets that work with
formulas. Roughly speaking, this means the data variables must be ei-
ther from a data frame or be vectors of the same length. (This is also
true of the S-PLUS modeling functions such aslm() .) But in S-PLUS
there are many other data structures. So that Trellis functions will be
easy to use, three functions convert data structures of different kinds into
data frames —make.groups() , as.data.frame.array() , and
as.data.frame.ts() .

157



158 CHAPTER 15. DATA STRUCTURES

15.1 make.groups()

The functionmake.groups() takes several vectors and constructs a data
frame with two components:data and which . For example, consider
payoffs of the New Jersey Pick-It lottery from three time periods. The data
are stored as three vectors of values. Suppose we want to make box plots to
compare the three distributions: We first convert the three vectors to a data
frame:

> lottery <- make.groups(lottery.payoff,
+ lottery2.payoff, lottery3.payoff)
> names(lottery)
[1] "data" "which"
> levels(lottery$which)
[1] "lottery.payoff" "lottery2.payoff"
[3] "lottery3.payoff"

The data component is simply the combined numbers from all the
make.groups arguments. Thewhich component is a factor with 3 lev-
els, giving the names of the original data vectors. Now we can make the box
plots, which are shown in Figure15.1:

bwplot(which ˜ data, data = lottery, aspect = 1)

15.2 as.data.frame.array()

The functionas.data.frame.array() converts arrays into data frames.
Consider the objectiris , a 3-way array of 50 measurements of 4 variables
for each of 3 varieties of irises:

> dim(iris)
[1] 50 4 3



15.2. AS.DATA.FRAME.ARRAY() 159

lottery.payoff

lottery2.payoff

lottery3.payoff

200 400 600 800

data

Figure 15.1: Data structures for making groups from multiple vectors.



160 CHAPTER 15. DATA STRUCTURES

We can turn iris into a data frame in preparation for Trellis plotting by
using:

iris.df <- as.data.frame.array(iris, col.dims = 2)
names(iris.df)[5:6] <- c("flower","variety")

The resulting data frame has what used to be its second dimension turned
into 4 columns:

> iris.df[1:5,]
Sepal L. Sepal W. Petal L. Petal W. flower variety

1 5.1 3.5 1.4 0.2 1 Setosa
2 4.9 3.0 1.4 0.2 2 Setosa
3 4.7 3.2 1.3 0.2 3 Setosa
4 4.6 3.1 1.5 0.2 4 Setosa
5 5.0 3.6 1.4 0.2 5 Setosa

Figure15.2is a scatterplot matrix of the data:

superpose.symbol <- trellis.par.get("superpose.symbol")
for (i in 1:4)

iris.df[,i] <- jitter(iris.df[,i])

splom(˜iris.df[,1:4],
key = list(

space = "top", columns = 3,
text = list(levels(iris.df$variety)),
points = Rows(superpose.symbol, 1:3)
),

varnames = c("Sepal Length\n(cm)",
"Sepal Width\n(cm)",
"Petal Length\n(cm)",
"Petal Width\n(cm)"),

groups = iris.df$variety,
panel = panel.superpose)

To prevent exact overlap of many of the plotting symbols, the data have been
jittered before plotting.



15.2. AS.DATA.FRAME.ARRAY() 161

5 6

6 7

6

7

5

6Sepal Length
(cm)

o

o
oo

o
o

o o

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o
oooo

o
o

oo

o
o

oo

o

oo

o

o
o
o

o

o

o

o

o oo o

o

oo

o

o

o
o

o

o

o

oo
o

o
o

o
o

o

o
o

o
oo

o
oo

o
oo

o o
o

o
o

o

o

oo

o

o
o

o
o
o o

o

o

o

o
oo

o o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o o
o

o
o

o
o

o
o
o

o

oo
o

o

o
o

o oo o

o

oo
o

o

o

o

o

oooo o
o

o oo o oooo o
ooo
oo o

oo
o

o
oooooo ooooo ooo
oooo

o
o

o oo oo

oo o
o

oo
o

o

o
o

o
oo

o

o
oo

o
o

o

o

o

oo
oo

ooo

o
ooo

o
o o oooo
o o

o
o

ooo o

o

o

o

o

oo o
o

o

o
o o

oo
o

oo oo

oo

o
o

o

o

o
o

o

oo
o oo

o
o
o

o
o

oo
o

oo
oo

oo
ooo

oo

oooo o
o

o oo
o

oooo o
ooo oo o

o
o

o

oo
o

oooo
o

o
ooo ooo oooo

o
oo oo oo

oo oo oo
o

o
oo

o

o

o

oo o
o

o

o

o

o

o
o

o
ooo

o
o

oo
o

o

oo o o
oooo

o
o

o

ooo o
o

o

o

o
o

o

o o
o oo

o

oo
oo

o
o

o
o
o

o

o
o o

o
o

ooo

o

o
o o

o

oo

oo

oo
o

o o

o

o
o
o

oo
o

o

oo
oo

o
o

o
o

o
o

o

oo

o

o o
o

o

o

o
o

o
o

o
oo o
oo

oo

o oo

oo
o

o
o

oo

o o

o o
o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

oo o
o

o

oo
o

o
oo

o oo
o

o o

o
ooo

o
o

o

o

o
o

ooo

o
o

o
o oo

o

o

o

o

o

o

o
o

o

o

o

o

o

oo
o

o o

oo

oo

o

o

o

o

o
o

o

o o
o

oo

o

oo
o

o

oo
o

o
o
o

o

ooo
o o

o
o

2.5 3.0

3.5 4.0

3.5

4.0

2.5

3.0
Sepal Width

(cm)

oo oo o
o

ooo o oooo o
ooo

ooo
oo

o
o

o ooooo o oooo ooo
ooo o o

o
o oo oo

ooo
o

oo
o

o

o
o

o
oo

o

o
oo

o
o

o

o

o

o o
oo

o o
o

o
oo o

o
o ooo oo

o o
o

o
o ooo

o

o

o

o

ooo
o

o

o
o o

oo o
o o oo

oo

o
o

o

o

o
o

o

o o
o oo

o
o
o

o
o

oo
o
oooo
oo

oo o oo

oo oo o
o

ooo
o

oooo o
ooo ooo

o
o

o

oo
o
oooo
o

o
ooo ooo ooo o

o
oo oo oo

oooo oo
o

o
oo

o

o

o

oo o
o

o

o

o

o

o
o

o
ooo
o

o

oo
o

o

o o oo
o ooo

o
o

o

o ooo
o

o

o

o
o

o

oo
o oo

o

oo
oo

o
o

o
o

o

o

o
oo

o
o

oo o

o

o
o o
o

oo

o o

oo
o
oo

o

o
o

o
o o

o

o

oo
oo
o

o

o
o

o
o
o

oo

o

o o
o
o

o

o
o

o
o

o
ooo

oo
oo

ooo

oo
o

o
o

oo

oo

oo
o
o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

oo o
o

o

oo
o

o
oo
ooo

o
oo

o
ooo

o
o

o

o

o
o

oo o

o
o

o
ooo

o

o

o

o

o

o

o
o

o

o

o

o

o

oo
o

oo

oo

oo

o

o

o

o

o
o

o

oo
o

oo

o

oo
o

o

oo
o

o
o

o

o

ooo
oo

o
o

o

o
oo

o
o

oo

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o
oooo
o

o

oo

o
o
oo

o

oo

o

o
o

o

o

o

o

o

o ooo

o

oo

o

o

o
o

o

o

o

oo
o
o

o

o
o

o

o
o

o
ooo

oo
o

oo
o o

o

o
o

o

o

o o

o

o
o

o
o
oo

o

o

o

o
oo
o o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o o
o

o
o

o
o

o
o
o

o

oo
o

o

o
o

o ooo

o

oo
o

o

o

o

o

2 3 4

4 5 6

4

5

6

2

3

4Petal Length
(cm)

ooooo
o

ooo
o
ooooo
oooooo
o

o
o

oo
o

oooo
o
o

oooooooooo

o
oooooo

oooo oo
o

o
oo

o

o

o

oo o
o

o

o

o

o

o
o

o
ooo

o
o

oo
o

o

oooo
ooo o
o

o
o

ooooo
o

o

o
o

o

o o
o oo

o

oo
oo

o
o

o
o
o

o

o
o o
o

o
ooo

o

o
oo

o

o o

oo

oo
o
oo

o

o
o

o
oo

o

o

oo
oo
o

o

o
o

o
o

o

oo

o

o o
o

o

o

o
o

o
o

o
oo o
oo
oo

ooo

oo
o

o
o

oo

oo

oo
o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

oo o
o

o

oo
o

o
oo

ooo
o
o o

o
ooo

o
o

o

o

o
o

ooo

o
o

o
ooo

o

o

o

o

o

o

o
o

o

o

o

o

o

oo
o

o o

oo

oo

o

o

o

o

o
o

o

oo
o

o o

o

oo
o

o

oo
o

o
o

o

o

o oo
oo o

o

o

o
oo

o
o

oo

o
o

o
o

oo

o

o

o

o
oo

o
oo

oo

o
oooo

o
o

oo

o
o
oo

o

oo

o

o
o

o

o

o

o

o

o ooo

o

oo

o

o

o
o

o

o

o

oo
o

o
o

o
o

o

o
o

o
oo
o

oo
o

oo
o o

o

o
o

o

o

oo

o

o
o

o
o
oo

o

o

o

o
oo
oo

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

ooo

o
o

o
o

o
o

o

o

oo
o

o

o
o
o o oo

o

o o
o

o

o

o

o

ooooo
o

oooo ooooo
ooo

ooo oo
o

o
o ooooo oooooooo
oooo o

o
ooooo

ooo
o
oo

o

o

o
o

o
oo

o

o
oo

o
o

o

o

o

oo
oo
o o
o

o
oo o

o
oooooo

o o
o

o
oooo

o

o

o

o

oo o
o

o

o
o o

oo o
o ooo

oo

o
o

o

o

o
o

o

oo
oo o

o
o

o
o

o
oo

o
o o

oo
o o
ooo
oo

0.5 1.0 1.5

1.5 2.0 2.5

1.5

2.0

2.5

0.5

1.0

1.5

Petal Width
(cm)

Setosa Versicolor Virginicao o o

Figure 15.2: Converting arrays into data frames.



162 CHAPTER 15. DATA STRUCTURES

15.3 as.data.frame.ts()

The functionas.data.frame.ts() takes one or more time series as
arguments and produces a data frame with components namedseries ,
which , time , andcycle . Theseries component is the data from all of
the time series combined into one long vector. Thetime component gives
the time associated with each of the points (measured in the same units as
the original series, e.g. years), andcycle gives the periodic component
of the time (e.g. 1=Jan, 2=Feb, ...). Finally, thewhich component is a
factor that tells which of the time series the measurement came from. In
the following example there is only one series,hstart , but in general
as.data.frame.ts can take many arguments:

> as.data.frame.ts(hstart)[1:5,]
series which time cycle

1 81.9 hstart 1966.000 Jan
2 79.0 hstart 1966.083 Feb
3 122.4 hstart 1966.167 Mar
4 143.0 hstart 1966.250 Apr
5 133.9 hstart 1966.333 May

Figure15.3graphs housing starts for each month separately from 1966
to 1974:

xyplot(series ˜ time|cycle,
data = as.data.frame.ts(hstart),
type = "b",
xlab = "Year",
ylab = "Housing Starts by Month")



15.3. AS.DATA.FRAME.TS() 163

50

100

150

200

Jan

1966 1968 1970 1972 1974

Feb Mar

1966 1968 1970 1972 1974

Apr May

50

100

150

200

Jun
50

100

150

200

Jul Aug Sep

Oct Nov

1966 1968 1970 1972 1974

50

100

150

200

Dec

Year

H
ou

si
ng

 S
ta

rt
s 

by
 M

on
th

Figure 15.3: Converting time series into data frames.



164 CHAPTER 15. DATA STRUCTURES



Chapter 16

More on Aspect Ratio and Scales:
Prepanel Functions

Banking to 45� is an important display method built into Trellis Graphics
through the argumentaspect= . And the ranges of scales on the panels
can be controlled by the argumentsxlim= andylim= , or by the argument
scales= . Another argument,prepanel= , is a function that supplies
information for the banking and range calculations.

165



166CHAPTER 16. MORE ON ASPECT RATIO AND SCALES: PREPANEL FUNCTIONS

16.1 prepanel=

Figure16.1is a graph of the ethanol data; NOx is graphed against E given
C and loess curves have been superposed.

xyplot(NOx ˜ E | C, data = ethanol,
aspect = 0.5,
layout = c(1,5),
panel = function(x, y){

panel.xyplot(x, y)
panel.loess(x, y, span = 1/2, degree = 2)
}

)

There are now two things we would like to do with this plot, one involving
the aspect ratio and the other involving the ranges of the scales.

First, we have set the aspect ratio to 1/2 usingaspect= . We could have
setaspect= to "xy" to carry out 45� banking of the line segments that
connect the points of the plot, that is, the graphed values ofE andNOx. But
normally we do want to carry out banking of the raw data if they are noisy;
rather we want to bank an underlying smooth pattern. In this example, we
want to bank using the line segments of the loess curves.

Second, in the top panel, the loess curve exceeds the maximum value
along the vertical scale and so is chopped off. It is important to understand
why this happened. The scales where chosed based on the values ofE and
NOx. The loess curves were computed by the panel function after all of the
scaling had been carried out. We would like a way for the scaling to take
account of the values of the loess curve.



16.1. PREPANEL= 167

1

2

3

4
C

0.6 0.8 1.0 1.2

1

2

3

4
C

1

2

3

4
C

1

2

3

4
C

1

2

3

4
C

E

N
O

x

Figure 16.1: The loess smooth curve is chopped off in the top panel.



168CHAPTER 16. MORE ON ASPECT RATIO AND SCALES: PREPANEL FUNCTIONS

The argumentprepanel= allows us to bank to 45� based on the loess
curves and to take the curves into account in computing the ranges of the
scales:

xyplot(NOx ˜ E | C, data = ethanol,
prepanel = function(x, y)

prepanel.loess(x, y, span = 1/2, degree = 2),
panel = function(x, y){

panel.xyplot(x, y)
panel.loess(x, y, span = 1/2, degree = 2)},

layout = c(1,5))

The resulting display is shown in Figure16.2.
prepanel= takes a function and does panel-by-panel computations,

just like panel= , but these computations are carried out before the scales
and aspect ratio are determined and so, can be used in their determination.
The returned value of a prepanel function is a list with prescribed component
names. These names are shown in the prepanel functionprepanel.loess :

> prepanel.loess
function(x, y, ...)

xlim <- range(x)
ylim <- range(y)
out <- loess.smooth(x, y, ...)
x <- out$x
y <- out$y
list(xlim = range(x, xlim), ylim = range(y, ylim),

dx = diff(x), dy = diff(y))

The component valuesxlim andylim determine ranges for the scales just
as they do when they are given as arguments of a general display function.
The values ofdx anddy are the horizontal and vertical changes of the line
segments that are to be banked to 45�.



16.1. PREPANEL= 169

1

2

3

4

C

0.6 0.8 1.0 1.2

1

2

3

4

C

1

2

3

4

C

1

2

3

4

C

1

2

3

4

C

E

N
O

x

Figure 16.2: Using a prepanel function.



170CHAPTER 16. MORE ON ASPECT RATIO AND SCALES: PREPANEL FUNCTIONS

For Figure16.2, prepanel.loess computes the smooths for all pan-
els, computes values ofxlim andylim that insure that the curve will be
included in the ranges of the scales, and then passes along the changes of
the line segments that will make up the plotted curve. Any of the compo-
nent names can be missing from the list; if eitherdx or dy is missing, the
other must be as well. Whendx anddy are present, they give the infor-
mation needed for banking to 45� as well as the instruction to do so; thus
aspect= should not be used as an argument whendx anddy are present.



Chapter 17

More on Multipanel Conditioning

The multipanel conditioning of Trellis Graphics has three more arguments
that assist in the control of the layout, visual design, and labeling.between=
puts space between adjacent columns or adjacent rows.skip= allows a
panel position to be skipped when packets are sent to the panels for draw-
ing. page= can add page numbers, text, or even graphics to each page of a
multipage Trellis display.

17.1 between=

Figures17.1and17.2graph the barley data. In this two-page Trellis display,
yield is plotted against site given variety and year.

171



172 CHAPTER 17. MORE ON MULTIPANEL CONDITIONING

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Svansota
1932

20 30 40 50 60

•

•
•

•

•
•

No. 462
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Manchuria
1932

•

•
•

•

•
•

No. 475
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Velvet
1932

•

•
•

•

•
•

Peatland
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Glabron
1932

•

•
•

•

•
•

No. 457
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Wisconsin No. 38
1932

•

•
•

•

•
•

Trebi
1932

20 30 40 50 60

yield

Figure 17.1: Multipage layout (page 1).



17.1. BETWEEN= 173

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Svansota
1931

20 30 40 50 60

•

•
•

•

•
•

No. 462
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Manchuria
1931

•

•
•

•

•
•

No. 475
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Velvet
1931

•

•
•

•

•
•

Peatland
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Glabron
1931

•

•
•

•

•
•

No. 457
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Wisconsin No. 38
1931

•

•
•

•

•
•

Trebi
1931

20 30 40 50 60

yield

Figure 17.2: Multipage layout (page 2).



174 CHAPTER 17. MORE ON MULTIPANEL CONDITIONING

Figures17.1and17.2were produced by:

barley.plot <- dotplot(site ˜ yield | variety*year,
data = barley, aspect = "xy", layout = c(2,5 2))

barley.plot

The layout — 2 columns, 5 rows, and 2 pages — has put the measurements
for 1931 on the first page and for 1932 on the second page. The display has
been saved inbarley.plot for future editing.

In Figure17.3, the panels of Figures17.1and17.2have been squeezed
into one page simply by changinglayout= from (2,5,2) to (2,10,1):

barley.plot <- update(barley.plot,
layout = c(2, 10, 1))

barley.plot

Rows 1 to 5 (starting from the bottom) have the 1932 data and rows 6 to 10
have the 1931 data. The change in the value of the year variable from rows
5 to 6 is indicated by the text of the strip label, but a stronger indication of a
change would occur if there was a break in the display between rows 5 and
6.



17.1. BETWEEN= 175

•
•

••

• •
Grand Rapids

Duluth
University Farm

Morris
Crookston

Waseca

Svansota
1932

20 30 40 50 60

•
•
••

••

No. 462
1932

•
•
••

••Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Manchuria
1932

•
•
••

• •

No. 475
1932

•
•
••

••
Grand Rapids

Duluth
University Farm

Morris
Crookston

Waseca

Velvet
1932

•
•

••

• •

Peatland
1932

•
•

••

• •
Grand Rapids

Duluth
University Farm

Morris
Crookston

Waseca

Glabron
1932

•
•
••

••

No. 457
1932

•
•

••

• •
Grand Rapids

Duluth
University Farm

Morris
Crookston

Waseca

Wisconsin No. 38
1932

•
•

••

• •

Trebi
1932

•
•

• •

••
Grand Rapids

Duluth
University Farm

Morris
Crookston

Waseca

Svansota
1931

•
•

• •

••

No. 462
1931

•
•

• •

••
Grand Rapids

Duluth
University Farm

Morris
Crookston

Waseca

Manchuria
1931

•
•

• •

• •

No. 475
1931

•
•

• •

• •
Grand Rapids

Duluth
University Farm

Morris
Crookston

Waseca

Velvet
1931

•
•

• •

••

Peatland
1931

•
•

• •

••Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Glabron
1931

•
•

• •

••

No. 457
1931

•
•

• •

••Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Wisconsin No. 38
1931

•
•

• •

• •

Trebi
1931

20 30 40 50 60

yield

Figure 17.3: Squeezing two pages into one.



176 CHAPTER 17. MORE ON MULTIPANEL CONDITIONING

The argumentbetween= can be used to insert space between adjacent
rows or adjacent columns of a Trellis display. This is illustrated in Fig-
ure17.4, which puts space between rows 5 and 6 of the barley display:

barley.plot <- update(barley.plot,
between = list(y = c(0,0,0,0,1,0,0,0,0)))

barley.plot

The argumentbetween= is a list with componentsx andy ; either can be
missing.x is a vector whose length is equal to the number of columns minus
one; the values are the amounts of space, measured in character heights, to
be inserted between columns. Similarly,y specifies the amounts of space
between rows.

17.2 skip=

Figures17.5and 17.6are a display of variables inmarket.survey , a
data frame. Each panel has box plots of usage for six age groups. The
conditioning variables are, first, seven levels of income and, second, two
long distance carriers.



17.2. SKIP= 177

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Svansota
1932

20 30 40 50 60

•

•
•

•

•
•

No. 462
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Manchuria
1932

•

•
•

•

•
•

No. 475
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Velvet
1932

•

•
•

•

•
•

Peatland
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Glabron
1932

•

•
•

•

•
•

No. 457
1932

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Wisconsin No. 38
1932

•

•
•

•

•
•

Trebi
1932

20 30 40 50 60

yield

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Svansota
1931

20 30 40 50 60

•

•
•

•

•
•

No. 462
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Manchuria
1931

•

•
•

•

•
•

No. 475
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Velvet
1931

•

•
•

•

•
•

Peatland
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Glabron
1931

•

•
•

•

•
•

No. 457
1931

•

•
•

•

•
•

Grand Rapids

Duluth

University Farm

Morris

Crookston

Waseca

Wisconsin No. 38
1931

•

•
•

•

•
•

Trebi
1931

20 30 40 50 60

yield

Figure 17.4: Adding space between adjacent rows.



178 CHAPTER 17. MORE ON MULTIPANEL CONDITIONING

18-24

25-34

35-44

45-54

55-64

65+

income: <7.5
pick: OCC

0 1 2 3 4 5

income: 7.5-15
pick: OCC

18-24

25-34

35-44

45-54

55-64

65+

income: 15-25
pick: OCC

income: 25-35
pick: OCC

18-24

25-34

35-44

45-54

55-64

65+

income: 35-45
pick: OCC

income: 45-75
pick: OCC

18-24

25-34

35-44

45-54

55-64

65+

income: >75
pick: OCC

log(1 + usage)

Figure 17.5: Skipping panels in a multipanel display (page 1).



17.3. PAGE= 179

Figures17.5and 17.6were produced by:

market.plot <- bwplot(
age ˜ log(1+usage) | income * pick,
data = market.survey,
strip = function(...)

strip.default(..., strip.names = T),
skip = c(F,F,F,F,F,F,F,T),
layout = c(2,4,2)
)

market.plot

Notice that the layout has eight panels per page but there are seven plots.
On both pages, the last panel is skipped. The skipping has been done
because the conditioning variableincome has 7 levels. The argument
skip= , which takes a logical vector, controls skipping. Each element says
whether or not to skip a panel. For Figures17.5and 17.6, skip is given
c(F,F,F,F,F,F,F,T) . On the first page, the first seven panels are filled
and the eighth is skipped. Since we ran out of elements ofskip= just as
we completed the first page, we went back to the beginning ofskip= and
to determine the skipping for the second page.

17.3 page=

The argumentpage= can add page numbers, text, or graphics to each page
of a multipage Trellis display.page= should be a function of a single
argumentn, the page number; the function tells what to draw on pagen. In
Figures17.7and 17.8, page= adds page numbers:

update(market.plot,
page = function(n)

text(x = .75, y = .95,
paste(" page", n), adj = .5))

text() , an S-PLUS core graphics function, uses a coordinate system that
is the same as the panel rectangle coordinate system for the argumentkey= ;
(0,0) is the lower left corner and (1,1) is the upper left corner.



180 CHAPTER 17. MORE ON MULTIPANEL CONDITIONING

18-24

25-34

35-44

45-54

55-64

65+

income: <7.5
pick: ATT

0 1 2 3 4 5

income: 7.5-15
pick: ATT

18-24

25-34

35-44

45-54

55-64

65+

income: 15-25
pick: ATT

income: 25-35
pick: ATT

18-24

25-34

35-44

45-54

55-64

65+

income: 35-45
pick: ATT

income: 45-75
pick: ATT

18-24

25-34

35-44

45-54

55-64

65+

income: >75
pick: ATT

log(1 + usage)

Figure 17.6: Skipping panels in a multipanel display (page 2).



17.3. PAGE= 181

18-24

25-34

35-44

45-54

55-64

65+

income: <7.5
pick: OCC

0 1 2 3 4 5

income: 7.5-15
pick: OCC

18-24

25-34

35-44

45-54

55-64

65+

income: 15-25
pick: OCC

income: 25-35
pick: OCC

18-24

25-34

35-44

45-54

55-64

65+

income: 35-45
pick: OCC

income: 45-75
pick: OCC

18-24

25-34

35-44

45-54

55-64

65+

income: >75
pick: OCC

log(1 + usage)

 page 1

Figure 17.7: Adding page information to a multipanel display (page 1).



182 CHAPTER 17. MORE ON MULTIPANEL CONDITIONING

18-24

25-34

35-44

45-54

55-64

65+

income: <7.5
pick: ATT

0 1 2 3 4 5

income: 7.5-15
pick: ATT

18-24

25-34

35-44

45-54

55-64

65+

income: 15-25
pick: ATT

income: 25-35
pick: ATT

18-24

25-34

35-44

45-54

55-64

65+

income: 35-45
pick: ATT

income: 45-75
pick: ATT

18-24

25-34

35-44

45-54

55-64

65+

income: >75
pick: ATT

log(1 + usage)

 page 2

Figure 17.8: Adding page information to a multipanel display (page 2).



Chapter 18

More Examples

This chapter contains a collection of examples. The displays and the S-
PLUS expressions that produce them are given on facing pages. Much can
be learned from these examples, which in many cases show advanced usages
of Trellis Graphics.

The examples also show how the two displays of chapter1 are drawn.
The examples use datasets in S-PLUS databases. Any computation that

needs to be performed before plotting is given as part of the example. In
other words, you can run these examples in S-PLUS.

183



184 CHAPTER 18. MORE EXAMPLES

attach(galaxy)
grid <- expand.grid(

east.west = seq(-25, 25, by = 2),
north.south = seq( -45, 45, by = 3))

fit <- c(predict(
loess(velocity ˜ east.west * north.south,
span = 0.25, degree = 2, normalize = F,
family = "symmetric"), grid))

detach()

wireframe(fit ˜ grid$east.west * grid$north.south,
screen = list(z = 200, x = -60, y = 0),
lwd = 1.5,
par.box = list(lwd = 3, lty = 1, col = 1),
colorkey = list(skip = c(F,T), tick.number=17),
drape = T,
distance = 0.3,
xlab = list("East-West", cex = 1),
ylab = list("South-North", cex = 1),
zlab = list("Velocity", cex = 1))



185

East-West

South-North

Velocity

1440

1480

1520

1560

1600

1640

1680

1720

1760

Figure 18.1: Color wireframe plot.



186 CHAPTER 18. MORE EXAMPLES

attach(environmental)
ozo.m <- loess(

(ozoneˆ(1/3)) ˜ wind * temperature * radiation,
parametric = c("radiation", "wind"), span = 1,
degree = 2
)

w.marginal <- seq(min(wind), max(wind),
length = 50)

t.marginal <- seq(min(temperature),
max(temperature), length = 50)

r.marginal <- seq(min(radiation), max(radiation),
length = 4)

wtr.marginal <- list(
wind = w.marginal,
temperature = t.marginal,
radiation = r.marginal)

grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
detach()

levelplot(fit ˜ wind * temperature | radiation,
data = grid,
cuts = 11,
pretty = T,
contour = T,
labels = F,
lwd = 6,
col = 1,
scale = list(cex = 0.7),
xlab = "Wind Speed (mph)",
ylab = "Temperature (F)")



187

60

70

80

90

radiation

5 10 15 20

radiation

radiation

60

70

80

90

radiation

5 10 15 20

Wind Speed (mph)

T
em

pe
ra

tu
re

 (
F

)

2

3

4

5

6

7

Figure 18.2: Color levelplot.



188 CHAPTER 18. MORE EXAMPLES

dotplot(variety ˜ yield | site,
data = barley,
groups = year,
panel = function(x, y, ...) {

dot.line <- trellis.par.get("dot.line")
abline(h = unique(y), lwd = dot.line$lwd,

lty = dot.line$lty, col = dot.line$col)
panel.superpose(x, y, ...)
},

scale = list(y = list(cex = .7)),
layout = c(1, 6),
par.strip = list(cex = .75),
aspect = .5,
xlab = list("Barley Yield (bushels/acre)",

cex = 1),
key = list(

y = 1.02,
points = Rows(trellis.par.get("superpose.symbol"),

1:2),
text = list(levels(barley$year)),
columns = 2
)

)



189

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Grand Rapids

20 30 40 50 60

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Duluth

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

University Farm

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Morris

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Crookston

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Waseca

Barley Yield (bushels/acre)

o o1932 1931

Figure 18.3: Dotplot with superposition and key.



190 CHAPTER 18. MORE EXAMPLES

attach(environmental)
Temp <- equal.count(temperature, 4, 1/2)
Wind <- equal.count(wind, 4, 1/2)

xyplot((ozoneˆ(1/3)) ˜ radiation | Temp * Wind,
prepanel = function(x, y)

prepanel.loess(x, y, span = 1),
panel = function(x, y){

panel.grid(h = 2, v = 2, lwd = .5)
panel.xyplot(x, y, cex = 0.6)
panel.loess(x, y, span = 1)
},

par.strip = list(cex = .75),
aspect = 2,
xlab = list("Solar Radiation (langleys)",

cex = 1),
ylab = list("Cube Root Ozone (cube root ppb)",

cex = 1)
)

detach()



191

1

2

3

4

5

Temp
Wind

0 100 250

Temp
Wind

Temp
Wind

0 100 250

Temp
Wind

Temp
Wind

Temp
Wind

Temp
Wind

1

2

3

4

5

Temp
Wind

1

2

3

4

5

Temp
Wind

Temp
Wind

Temp
Wind

Temp
Wind

Temp
Wind

Temp
Wind

0 100 250

Temp
Wind

1

2

3

4

5

Temp
Wind

0 100 250

Solar Radiation (langleys)

C
ub

e 
R

oo
t O

zo
ne

 (
cu

be
 r

oo
t p

pb
)

Figure 18.4: Scatterplot with grids and loess curves.



192 CHAPTER 18. MORE EXAMPLES

iris.df <- as.data.frame.array(iris, col.dims = 2)
names(iris.df)[5:6] <- c("flower", "variety")
for (i in 1:4)

iris.df[,i] <- jitter(iris.df[,i])

splom( ˜ iris.df[,1:4] | iris.df[,"variety"],
cex = .2,
varnames = c("SL", "SW", "PL", "PW"),
page = function(...)

text(seq(.6, .8, length = 4),
seq(.9, .6, length = 4),
c("Three", "Varieties", "of", "Iris"),
adj = 0, cex = 1.5

)
)



193

5 6

6 7

6

7

5

6SL

2.5 3.0

3.5 4.0

3.5

4.0

2.5

3.0SW

2 3 4

4 5 6

4

5

6

2

3

4PL

0.5 1.0 1.5

1.5 2.0 2.5

1.5

2.0

2.5

0.5

1.0

1.5

PW

Setosa

5 6

6 7

6

7

5

6SL

2.5 3.0

3.5 4.0

3.5

4.0

2.5

3.0SW

2 3 4

4 5 6

4

5

6

2

3

4PL

0.5 1.0 1.5

1.5 2.0 2.5

1.5

2.0

2.5

0.5

1.0

1.5

PW

Versicolor

5 6

6 7

6

7

5

6SL

2.5 3.0

3.5 4.0

3.5

4.0

2.5

3.0SW

2 3 4

4 5 6

4

5

6

2

3

4PL

0.5 1.0 1.5

1.5 2.0 2.5

1.5

2.0

2.5

0.5

1.0

1.5

PW

Virginica

Three

Varieties

of

Iris

Figure 18.5: Scatterplot matrix conditioned by a group variable.



194 CHAPTER 18. MORE EXAMPLES

new.solder <- solder
for (i in 1:5)

new.solder[,i] <- reorder.factor(new.solder[,i],
new.solder[,6])

dotplot(
PadType ˜ sqrt(skips) | Panel*Opening*Solder*Mask,
data = new.solder,
strip = function(...)

strip.default(..., strip.names = T),
between = list(y = c(0,0,1,0,0)),
layout = c(3,6,5))



195

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L

Solder: Thick
Mask: A1.5

0 2 4 6

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: L

Solder: Thick
Mask: A1.5

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: L

Solder: Thick
Mask: A1.5

0 2 4 6

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M

Solder: Thick
Mask: A1.5

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: M

Solder: Thick
Mask: A1.5

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: M

Solder: Thick
Mask: A1.5

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S

Solder: Thick
Mask: A1.5

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: S

Solder: Thick
Mask: A1.5

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: S

Solder: Thick
Mask: A1.5

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L
Solder: Thin
Mask: A1.5

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: L
Solder: Thin
Mask: A1.5

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: L
Solder: Thin
Mask: A1.5

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M
Solder: Thin
Mask: A1.5

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: M
Solder: Thin
Mask: A1.5

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: M
Solder: Thin
Mask: A1.5

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S
Solder: Thin
Mask: A1.5

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: S
Solder: Thin
Mask: A1.5

0 2 4 6

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: S
Solder: Thin
Mask: A1.5

sqrt(skips)

Figure 18.6: Dotplot of a response in a factorial experiment (page 1).



196 CHAPTER 18. MORE EXAMPLES

•
••

•
•

•

•
•

•
•

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L

Solder: Thick
Mask: A3

0 2 4 6

•
••

•
•

•

•
•

•
•

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: L

Solder: Thick
Mask: A3

•
• •

•
•

•

•
•

•
•

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: L

Solder: Thick
Mask: A3

0 2 4 6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M

Solder: Thick
Mask: A3

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: M

Solder: Thick
Mask: A3

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: M

Solder: Thick
Mask: A3

•
••

•
•

•

•
•

•
•

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S

Solder: Thick
Mask: A3

•
• •

•
•

•

•
•

•
•

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: S

Solder: Thick
Mask: A3

•
• •

•
•

•

•
•

•
•

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: S

Solder: Thick
Mask: A3

•
• •

•
•

•

•
•

•
•

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L
Solder: Thin

Mask: A3

•
• •

•
•

•

•
•

•
•

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: L
Solder: Thin

Mask: A3

•
• •

•
•

•

•
•

•
•

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: L
Solder: Thin

Mask: A3

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M
Solder: Thin

Mask: A3

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: M
Solder: Thin

Mask: A3

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: M
Solder: Thin

Mask: A3

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S
Solder: Thin

Mask: A3

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: S
Solder: Thin

Mask: A3

0 2 4 6

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: S
Solder: Thin

Mask: A3

sqrt(skips)

Figure 18.7: Dotplot of a response in a factorial experiment (page 2).



197

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L

Solder: Thick
Mask: B3

0 2 4 6

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: L

Solder: Thick
Mask: B3

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: L

Solder: Thick
Mask: B3

0 2 4 6

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M

Solder: Thick
Mask: B3

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: M

Solder: Thick
Mask: B3

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: M

Solder: Thick
Mask: B3

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S

Solder: Thick
Mask: B3

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: S

Solder: Thick
Mask: B3

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: S

Solder: Thick
Mask: B3

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L
Solder: Thin

Mask: B3

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: L
Solder: Thin

Mask: B3

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: L
Solder: Thin

Mask: B3

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M
Solder: Thin

Mask: B3

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: M
Solder: Thin

Mask: B3

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: M
Solder: Thin

Mask: B3

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S
Solder: Thin

Mask: B3

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: S
Solder: Thin

Mask: B3

0 2 4 6

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: S
Solder: Thin

Mask: B3

sqrt(skips)

Figure 18.8: Dotplot of a response in a factorial experiment (page 3).



198 CHAPTER 18. MORE EXAMPLES

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L

Solder: Thick
Mask: B6

0 2 4 6

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: L

Solder: Thick
Mask: B6

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: L

Solder: Thick
Mask: B6

0 2 4 6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M

Solder: Thick
Mask: B6

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: M

Solder: Thick
Mask: B6

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: M

Solder: Thick
Mask: B6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S

Solder: Thick
Mask: B6

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: S

Solder: Thick
Mask: B6

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: S

Solder: Thick
Mask: B6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L
Solder: Thin

Mask: B6

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: L
Solder: Thin

Mask: B6

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: L
Solder: Thin

Mask: B6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M
Solder: Thin

Mask: B6

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: M
Solder: Thin

Mask: B6

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: M
Solder: Thin

Mask: B6

•
••

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S
Solder: Thin

Mask: B6

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: S
Solder: Thin

Mask: B6

0 2 4 6

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: S
Solder: Thin

Mask: B6

sqrt(skips)

Figure 18.9: Dotplot of a response in a factorial experiment (page 4).



199

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L

Solder: Thick
Mask: A6

0 2 4 6

Panel: 3
Opening: L

Solder: Thick
Mask: A6

Panel: 2
Opening: L

Solder: Thick
Mask: A6

0 2 4 6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M

Solder: Thick
Mask: A6

•
• •

•
•

•

•
•

•
•

Panel: 3
Opening: M

Solder: Thick
Mask: A6

•
• •

•
•

•

•
•

•
•

Panel: 2
Opening: M

Solder: Thick
Mask: A6

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S

Solder: Thick
Mask: A6

Panel: 3
Opening: S

Solder: Thick
Mask: A6

Panel: 2
Opening: S

Solder: Thick
Mask: A6

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: L
Solder: Thin

Mask: A6

Panel: 3
Opening: L
Solder: Thin

Mask: A6

Panel: 2
Opening: L
Solder: Thin

Mask: A6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: M
Solder: Thin

Mask: A6

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: M
Solder: Thin

Mask: A6

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: M
Solder: Thin

Mask: A6

•
• •

•
•

•

•
•

•
•

W9
L6
L9
L7
D6
L8

W4
D7
D4
L4

Panel: 1
Opening: S
Solder: Thin

Mask: A6

•
••

•
•

•

•
•

•
•

Panel: 3
Opening: S
Solder: Thin

Mask: A6

0 2 4 6

•
••

•
•

•

•
•

•
•

Panel: 2
Opening: S
Solder: Thin

Mask: A6

sqrt(skips)

Figure 18.10: Dotplot of a response in a factorial experiment (page 5).



200 CHAPTER 18. MORE EXAMPLES

attach(barley)
morris31 <- yield[(site=="Morris")&(year=="1931")]
morris32 <- yield[(site=="Morris")&(year=="1932")]
new.yield <- yield
new.yield[(site=="Morris")&(year=="1931")] <- morris32
new.yield[(site=="Morris")&(year=="1932")] <- morris31
wt <- rep(1, length(yield))
for(i in 1:10){

barley.lm <- lm(new.yield˜variety+year*site,
weights = wt)

wt <- wt.bisquare(
barley.lm$res/median(abs(barley.lm$res)

),
c = 6)

}
detach()

rfs(barley.lm,
scale = list(cex = .8),
par.strip.text = list(cex = 1),
aspect = 2,
ylab = list("Yield (bushels/acre)", cex = 1.25),
xlab = list("f-value", cex = 1.25))



201

-20

-10

0

10

20

Fitted Values minus Mean

0.0 0.2 0.4 0.6 0.8 1.0

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

f-value

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

Figure 18.11: Rfs plot.



202 CHAPTER 18. MORE EXAMPLES

wolfer <- window(sunspots, end = c(1924,12))
wolfer <- ts(tapply(wolfer, trunc(time(wolfer)),

mean),
start = 1749)

sun1.0 <- xyplot(wolfer˜time(wolfer),
type = "l",
aspect = 1.0,
ylab = "",
xlab = "Sunspot Number vs. Year")

sunxy <- xyplot(wolfer˜time(wolfer),
type = "l",
aspect = "xy",
ylab = "",
xlab = "Sunspot Number vs. Year",
ylim = range(wolfer)+c(-1,1)*diff(range(wolfer))*.2)

print(sun1.0, position = c(0,.25,1,1), more = T)
print(sunxy, position = c(0,0,1,.3))



203

0

50

100

150

1750 1800 1850 1900

Sunspot Number vs. Year

0

150

1750 1800 1850 1900

Sunspot Number vs. Year

Figure 18.12: Multiple trellis plots on one page.



204 CHAPTER 18. MORE EXAMPLES

attach(galaxy)
grid <- expand.grid(

east.west = seq(-25, 25, by = 2),
north.south = seq( -45, 45, by = 3))

fit <- c(predict(loess(
velocity ˜ east.west * north.south,

span = 0.25, degree = 2, normalize = F,
family = "symmetric"), grid))

detach()

angle <- c(22.5, 67.5, 112.5, 337.5, 157.5,
292.5, 247.5, 202.5)

Angle <- shingle(rep(angle, rep(length(fit), 8)),
angle)

wireframe( rep(fit, 8) ˜ rep(grid$east.west, 8) *
rep(grid$ north.south, 8) | Angle,
groups = Angle,
panel = function(x, y, subscripts, z, groups,...){

w <- groups[subscripts][1]
panel.wireframe(x, y, subscripts, z,

screen = list(z = w, x = -60, y = 0), ...)
},

strip = FALSE,
skip = c(F, F, F, F, T, F, F, F, F),
layout = c(3,3),
distance = .3,
xlab = "E-W",
ylab = "S-N",
zlab = "V"
)



205

E-W

S-N

V

S-N

E-W

V

S-N

E-W

V

E-W

S-N

V

E-W

S-N

V

S-N

E-W

V

S-N

E-W

V

E-W

S-N

V

Figure 18.13: Multipanel wireframe plot.


	Contents
	List of Figures
	About Trellis Graphics
	Discovering the Morris Mistake
	Seeing the Sunspot Cycles
	Trellis Features
	Trellis and the Core S-PLUS Graphics
	Trellis vs. the Old S-PLUS Graphics

	About This {em User's Manual}
	What Does this {em Manual} Cover?
	Trellis and S-PLUS Graphics
	Other Reading About Trellis
	Some Important Conventions Used in this {em Manual}
	Data Sets
	Code for the Examples in This {em Manual}

	Getting Started
	trellis.device()
	dev.off()
	Trellis Objects: print.trellis()
and update()
	Example Functions
	Online Documentation

	A Roadmap of Trellis Graphics
	General Display Functions
	Common Arguments
	Panel Functions
	Core S-PLUS Graphics
	Devices and Settings
	Data Structures

	Giving Data to General Display Functions
	A Data Set: gas
	formula=
	data=
	subset=
	Data Frames

	Aspect Ratio
	The Aspect Ratio of a Graph is a Critical Factor
	aspect=

	General Display Functions
	A Data Set: fuel.frame
	xyplot()
	bwplot()
	stripplot()
	qq()
	dotplot()
	barchart()
	piechart()
	qqmath()
	histogram()
	densityplot()
	splom()
	parallel()
	A Data Set: gauss
	contourplot()
	levelplot()
	wireframe()
	cloud()
	The Display Functions and Their Formulas

	Arranging Several Graphs On One Page
	print()

	Multipanel Conditioning
	A Data Set: barley
	About Multipanel Display
	formula= 
	Columns, Rows, and Pages
	Packet Order and Panel Order
	layout=
	Main-Effects Ordering: reorder.factor()
	Controlling the Pages of a Multipage Display
	Summary: How to Lay Out a Multipanel Display
	A Data Set: ethanol
	Conditioning On Discrete Values of a Numeric Variable
	Conditioning On Intervals of a Numeric Variable
	equal.count()
	Shingles: shingle()

	Scales and Labels
	xlab=, ylab=, main=, sub=
	xlim=, ylim=
	scales=, pscales=
	3-D Display: aspect=
	Changing the Text in Strip Labels
	Strip Label Text Size: par.strip.text=
	Programming Strip Labels: strip=

	Devices
	Three Kick Methods
	trellis.device()
	Sending to a Printer or a File
	Devices for this {em Manual}
	Multiple Devices: dev.list(),
dev.cur(), dev.set()

	Panel Functions
	How to Change the Rendering in the Data Region
	Passing Arguments to a Default Panel Function
	Writing A Panel Function: panel=
	A Panel Function for a Multipanel Display
	Special Panel Functions
	subscripts=

	Panel Functions and the Trellis Settings
	trellis.par.get()
	show.settings()
	trellis.par.set()

	Superposing Groups on a Panel
	panel.superpose()
	key=

	Data Structures
	make.groups()
	as.data.frame.array()
	as.data.frame.ts()

	More on Aspect Ratio and Scales: Prepanel Functions
	prepanel=

	More on Multipanel Conditioning
	between=
	skip=
	page=

	More Examples

