nlmin(f, x, d=rep(1,length(x)), print.level=0, max.fcal=30,
max.iter=15, init.step=1, rfc.tol=<<see below>>, ckfc=0.1,
xc.tol=<<see below>>, xf.tol=<<see below>>)
Dennis, J. E. and Mei, H. H. W. (1979). Two new unconstrained optimization algorithms which use function and gradient values. Journal of Optimization Theory and Applications 28, 453-483.
# minimize a simple function
func <- function(x) {x^2-2*x+4}
min.func <- nlmin(func,0)
# one way to pass parameters to the function is:
function()
{
co <- c(1, 2)
assign("co", co, frame = 1)
f1 <- function(x)
{
co[1] + co[2] * x^2
}
nlmin(f1, 10)
}