nlme.nlsList(object, fixed, random = fixed, cluster, data=sys.parent(),
             start, est.method=c("ML", "RML"), re.block,
             re.structure=c("unstructured", "diagonal", "identity",
             "compsymm", "ar1"), re.paramtr=c("matrixlog", "cholesky",
             "spherical", "logcholesky", "givens"),
             serial.structure=c("identity", "ar1", "ar1.continuous",
             "compsymm", "ar2", "ma1", "ma2", , serial.covariate=NULL,
             serial.covariate.transformation=c("rank.within.cluster",
             "none", "round", "global.rank"), var.function=c("identity",
             "power", "expon", "cte.power", "cte.expon"),
             var.covariate=NULL, var.estimate=T, control, na.action,
             na.pattern, verbose=F)
Theo.nlsList <- nlsList(conc ~ first.order.log(Dose, time, lCl, lka,
                          lke), data = Theoph, cluster = ~ Subject)
Theo.nlsList.fit <- nlme(Theo.nlsList)
Theo.nlsList.fit
# Returns the following:
Call:
  Model: conc ~ first.order.log(Dose, time, lCl, lka, lke)
  Fixed: list(lCl ~ ., lka ~ ., lke ~ .)
 Random: list(lCl ~ ., lka ~ ., lke ~ .)
Cluster:  ~ Subject
   Data: Theoph
Variance/Covariance Components Estimate(s):
  Structure: matrixlog
  Standard Deviation(s) of Random Effect(s)
       lCl       lka       lke
 0.2510528 0.6364656 0.1309519
 Correlation of Random Effects
            lCl         lka
lka -0.08624075
lke  0.99477586  0.015542499
 Cluster Residual Variance: 0.4650816
Fixed Effects Estimate(s):
        lCl       lka       lke
  -3.214444 0.4512505 -2.432664
Number of Observations: 132
Number of Clusters: 12