nlme(object, fixed, random = fixed, cluster, data = sys.parent(),
     start, est.method = c("ML", "RML"),  re.block, re.structure =
     c("unstructured", "diagonal", "identity", "compsymm", "ar1"),
     re.paramtr = c("matrixlog", "logcholesky", "cholesky", "spherical",
     "givens"), serial.structure = c("identity", "ar1", "ar1.continuous",
     "compsymm", "ar2", "ma1", "ma2", "arma11"), serial.covariate = NULL,
     serial.covariate.transformation = c("rank.within.cluster", "none",
     "round", "global.rank"), var.function = c("identity", "power",
     "expon", "cte.power"), var.covariate = NULL, var.estimate = T,
     control, na.action, na.pattern, verbose = F)
Note: random effects are always assumed to have mean zero. A nonzero mean can be specified by including an identical term in the fixed effects part of the model.
Pinheiro, J.C. and Bates., D.M. (1996). Unconstrained Parametrizations for Variance-Covariance Matrices. Statistics and Computing, to appear.
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994). Time Series Analysis: Forecasting and Control, 3rd Edition. Holden-Day.
Davidian, M. and Giltinan, D.M. (1995). Nonlinear Mixed Effects Models for Repeated Measurement Data. Chapman and Hall.
# Example from Lindstrom and Bates (1990) Biometrics
Orange.fit <- nlme(circumference ~ A/(1 + exp((B - age)/C)),
                   fixed = list(A ~ ., B ~ ., C ~ .),
                   random = list(A ~ ., B ~ .), cluster = ~ Tree,
                   data = Orange, start = list(fixed = c(160, 700, 350)),
                   serial.structure = "ar2", var.function = "expon")
Orange.fit
# Returns the following:
Call:
  Model: circumference ~ A/(1 + exp((B - age)/C))
  Fixed: list(A ~ ., B ~ ., C ~ .)
 Random: list(A ~ ., B ~ .)
Cluster:  ~ Tree
   Data: Orange
Variance/Covariance Components Estimate(s):
  Structure: matrixlog
  Standard Deviation(s) of Random Effect(s)
        A        B
 35.94847 68.57305
 Correlation of Random Effects
          A
B 0.6613264
 Cluster Residual Variance: 27.79603
 Serial Correlation Structure: ar2
 Serial Correlation Parameter(s): -0.42132853  0.05348223
 Variance Function: expon
 Variance Function Parameter(s): 0.0034951
Fixed Effects Estimate(s):
         A        B        C
 189.5978 705.7406 342.2209
Number of Observations: 35
Number of Clusters: 5