cancor(x, y, xcenter=<<see below>>, ycenter=<<see below>>)
The second and higher canonical correlations find linear combinations that maximize the correlation subject to being uncorrelated with previous canonical variables. The number of canonical correlations is the minimum of the number of variables in the two sets.
Dillon, W. R. and Goldstein, M. (1984). Multivariate Analysis, Methods and Applications. Wiley, New York.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, London.
#canonical decomposition with column means swept out cancor(x, y)#canonical decomposition with column medians of x subtracted out, y as is cancor(x, y, apply(x, 2, median), F)
soil <- evap.x[,1:3] air <- evap.x[,-1:-3] cc.airsoil_cancor(air, soil) can.air <- air %*% cc.airsoil$xcoef can.soil <- soil %*% cc.airsoil$ycoef plot(can.air[,1], can.soil[,1], xlab="first air canonical variable", ylab="first soil canonical variable")
par(mfrow=c(2, 1)) barplot(cc.airsoil$xcoef[,1], ylab="first air loadings", names=dimnames(air)[[2]], density=20) barplot(cc.airsoil$ycoef[,1], ylab="first soil loadings", names=dimnames(soil)[[2]], density=20, space=1.4)