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Preface

This guide was originally written for graduate students in Statistics at the University of Ox-
ford. The first versions were based closely on notes by Dr. Bill Venables of the Department
of Statistics at the University of Adelaide, but have been updated to reflect later versions of S,
the extensions of S-Plus and local facilities. Several sections, in particular 4, 6 and 11, remain
close to Dr. Venables’ original material. This guide will no longer be updated, following the
publication of Venables & Ripley (1994). [See p. 1. Where that takes a significantly better
approach than earlier editions of these notes, the material formerly here has been dropped.]

The guide is to S-Plus, but much of it will be relevant to users of the underlying S. Extensions
which are only in S-Plus include dynamic graphics (x6.3, brush and spin) and the classical
statistics functions (x9). The terminology of this guide is intended to be precise, only referring
to S-Plus rather than S for features unique to S-Plus.

These notes were written for a particular environment, S-Plus 3.2 on Sun SparcStations running
the Open Windows windowing system. You will find a number of differences depending on
your local environment. It will help to have the library ripley available — it should be in the
same source as these notes. It can be also be obtained by anonymous ftp frommarkov.stats.ox.ac.uk (163.1.20.1)

in file pub/S/ripley.sh.Z. It is available from statlib (see Section A.2) assend ripley from S
Alternatively, library(MASS) from Venables & Ripley (1994) can be used.

This guide may be freely copied and redistributed for any educational purpose (including com-
mercial courses) provided its authorship (B.D. Ripley and W.N. Venables) is clearly stated.
Where appropriate, a small charge to cover the costs of production and distribution, only, may
be made.

B.D. Ripley,
University of Oxford,
24th August, 1994.
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1 Introduction

S is a statistical language developed at AT&T’s Bell Laboratories. S-Plus is a binary distri-
bution of S, with added functions, produced by the StatSci Division of MathSoft in Seattle.
The S system was radically re-designed in the 1988 release and known as ‘New S’. In August
1991 a new release of what is once again called S consisted of a moderate revision of ‘New
S’ together with far-ranging extensions. S-Plus 3.0 was introduced in late 1991, based on that
release of S, with numerous additional features. S-Plus 3.1 was released at the very end of
1992, and S-Plus 3.2 in very early 1994.

The main references are:

R.A. Becker, J.M. Chambers and A.R. Wilks (1988) The NEW S language. Wadsworth &
Brooks/Cole.

J.M. Chambers and T.J. Hastie (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

It is not the intention of this guide to replace the books. Rather these notes are intended as
a brief introduction to the capabilities of the S programming language and to how to perform
some common statistical procedures within S. Users of S-Plus will need to consult both books,
probably frequently. Both books contain some reference documentation, but the on-line ver-
sions (see x1.2) are later and definitive.

There also manuals for S-Plus itself, whose organization differs from release to release.

Other books include

W.N. Venables and B.D. Ripley (1994) Modern Applied Statistics with S-Plus. New York:
Springer ISBN 0-387-94350-1

which goes far beyond the coverage of this guide, including many topics (such as robust statis-
tics, non-linear regressions, modern regression, survival analysis, tree-based models, time se-
ries and spatial statistics) not covered here, as well as in greater depth on what is covered.

1.1 Starting and Finishing

To start S-Plus, type the commandmachine% Splus
After a short while (and, the first time, an initialization message) you get the S-Plus prompt1:>
This is waiting for input from you.

Technically S is a function language with a very simple syntax. Like most Unix based packages
it is case sensitive, so A and a are different variables. Elementary commands consist of either
expressions or assignments. If an expression is given as a command, it is evaluated, printed,
and the value is discarded2. An assignment also evaluates an expression and passes the value1which can be changed, but the default is assumed here2In fact it is kept in the (hidden) variable .Last.value and so can be retrieved from the ‘bin’.
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to a variable but the result is not printed automatically. An expression can be as simple as 2 +3 or a complex function call. Assignments are indicated by the assignment operator <- or .
(As the first needs two keystrokes, lazy typists use the second. However, the first is easier to
read.) For example,> 2+3[1] 5> mean(hstart)[1] 137.9944> m <- mean(hstart); v <- var(hstart)> m/sqrt(v)[1] 3.174021
The [1] states that the answer is starting at the first element of a vector.

Commands are separated either by a semi-colon, ;, or by a newline. If a command is not com-
plete at the end of a line, S will give a different prompt, namely+
on second and subsequent lines and continue to read input until the command is syntactically
complete.

S can be extended by writing new functions, which then can be used exactly as built-in func-
tions (and can even replace them). How to write your own functions is covered in section 12.

1.2 Getting Help

S has an inbuilt help facility similar to the man facility of Unix. To get more information on
any specific named function or dataset, for example mean, the command is> help(mean)
For a feature specified by special characters, and in a few other cases (one is "swiss"), the
argument must be enclosed in double quotes, making it a ‘character string’:> help("[[")
Help uses a window which overlays your main window. The pager accepts a number of options,
including space for the next page and q to quit. (Other useful options are 1G to go to the top
and control-b to go back a page.) If you prefer, a separate help window (which can be left
up) can be obtained by the argument window=T. Another way to get help is by> ?mean
Short help is given by the function args.

S-Plus also has a window-based help facility, started by> help.start(gui="openlook")
Click with the left mouse button on items to select categories and items. The help window can
be left up, or removed by
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It is not advisable to quit S-Plus windows from the frame menu.

1.3 Hardcopy Output

Graphics are printed by holding down the right button on the graph menu in a openlook()
window (see x6) and releasing over the print item. This will print on the nearest laser printer
(or that selected by your PRINTER environment variable).

To record a session cut-and-paste to a textedit window, then remove your mistakes (if any)
and save as a Unix file.

2 Datasets

Datasets are stored in a directory �/.Data. They are permanent, so all the objects you create
are retained until explicitly deleted. (As the directory name .Data begins with . it will nor-
mally be hidden in file listings from Unix by ls.) If there is a .Data directory in the current
directory when S is invoked, that directory is used rather than �/.Data. This provides one
way to organize your S, using separate directories for each project.

In S, to get a list of names of the objects currently defined use the command> objects()
Your own functions are also stored in .Data. To find out whether an object is a function or
dataset, and what is in it, just type its name at the prompt, e.g.> stack.x> plot
This prints out the function, dataset, : : : . In the later versions of S it may print a short summary
of the object. To get the full details, use> print.default(object)
When S looks for an object, it searches in turn through a sequence of directories known as the
search list. Usually the first entry in the search list is the .Data sub-directory of the current
working directory. The names of the directories currently on the search list can be found by
the function> search()
The names of the objects held in any directory on the search list can be displayed by giving thels function an argument. For example objects(2) lists the contents of the second directory
in the search list. Normally the second, third and fourth directories are built-in functions, and
the fifth, sixth and seventh contain standard datasets

Extra search directories can be added to this list with the attach(: : :) function and removed
with the detach(: : :) function, details of which can be found in the manuals or the help fa-
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cility. Note that attached directories are searched after the .Data directory in the order last
attached to first attached.

To remove objects permanently the function rm is available:> rm(x,y,z,in,junk,temp)
The function remove(: : :) can be used to remove objects with non-standard names.

Warning

Objects in your .Data directory will take precedence over system objects of the same name.
This is a frequent cause of rather obscure errors, and can cause apparently correct behaviour but
erroneous results. Avoid using names such as c, s, t, glm, range, tree for your own
objects. If you get peculiar errors, clean up your .Data directory and try again!

S keeps a record of commands in the .Audit file in the .Data directory. This is a hidden file
and can grow rather large. Use (from the Unix command line)Splus TRUNC_AUDIT 0
occasionally to clean out the audit file entirely (or omit the 0 to keep the last 0.5Mb).
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3 A First Session

The sample session given below is intended to show by example some of the capabilities of the
system. Work through the session given by the commands on the left of the page. Some clues
as to what is going on are given at the right hand side of the page.machine% Splus Start the session.> openlook() Open the graphics window.> library(ripley) Add a library of functions and datasets.> help(trees) use q to quit> trees Print out a data frame of the trees data> attach(trees) so that we can use names diam etc> hist(diam) Histogram as counts.> hist(diam, nclass=10, probability=T) as probability density> help(hist)> stem(diam) Stem-and-leaf plot.> plot(diam, volume) Scatter plot.> trees.lm <- lm(volume ~ diam) linear regression> summary(trees.lm) summary of fit> anova(trees.lm) analysis of variance table> abline(trees.lm) plot line on scatter plot> identify(diam, volume, height) Move mouse to plot and click with left button

to see what height is. Click middle button to
quit.> par(mfrow=c(1,2)) set up 1 row, 2 cols for plots> plot(trees.lm) plots of fitted values and jresidualsj vs fitted value.> par(mfrow=c(1,1)) one plot again.> qqnorm(residuals(trees.lm)) normal probability plot of residuals> qqnorm(studres(trees.lm)) and of Studentized residuals> qqline(studres(trees.lm)) line through quartiles> pairs(trees) all pair-wise scatter plots> brush(cbind(diam, height, volume)) rotate points in 3D, select and de-select points.
Click on quit to end> trees.lm2 <- lm(volume ~ diam + height) multiple regression. Try functions as before> trees.lm3 <- lm(log(volume) ~ log(diam) + log(height))> detach("trees") to avoid any confusion> help(road)> attach(road)> plot(drivers, deaths)> plot(drivers, deaths, log="xy")> state <- row.names(road)> identify(drivers, deaths, state) Find the ‘odd’ states.> plot(fuel, deaths, log="xy")> identify(fuel, deaths, state)> road.mat <- cbind(drivers, fuel, deaths) Set up a matrix> pairs(road.mat) Look at pattern of all three> brush(road.mat, rowlab=state, spin=F) Use mouse to highlight points and check their
identity. Then click on quit> q() Finish session
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4 Simple Data Manipulation

The basic data objects in S are vectors, arrays, lists and data frames.

4.1 Vectors

S operates on named data structures. The simplest such structure is the vector, which is a sin-
gle entity consisting of an ordered collection of numbers. To set up a vector named x, say,
consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the S command> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)
This is an assignment statement using the function c(: : :) taking an arbitrary number of vector
arguments and whose value is the vector of its arguments.

A number occurring by itself in an expression is taken as a vector of length one.

Assignments can also be made in the other direction, using the obvious change in the assign-
ment operator. So the same assignment could be made using> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x
If an expression is used as a complete command, the value is printed and lost. So now if we
were to use the command> 1/x
the reciprocals of the five values would be printed (and, of course, the value of x would be
unchanged).

4.2 Vector Arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed
element-by-element. Vectors occurring in the same expression need not all be of the same
length. If they are not, the value of the expression is a vector with the same length as the longest
vector which occurs in the expression. Shorter vectors in the expression are recycled as often
as need be (perhaps fractionally) until they match the length of the longest vector. In particular
a constant is simply repeated. So with the above assignments the command> v <- 2*x + y + 1
generates a new vector v of length 11 constructed by adding together, element-by-element, 2*x
repeated 2.2 times, y repeated just once, and 1 repeated 11 times.

The elementary arithmetic operators are the usual +, -, *, / and ^ for raising to a power. In
addition all of the common arithmetic functions are available. log, log10, exp, sin, cos,tan, sqrt, and so on, all have their usual meaning. max and min select the largest and small-
est elements of an vector respectively. range is a function whose value is a vector of length
two, namely c(min(x),max(x)). The element-by-element maximum and minimum of two or
more vectors are given by pmax and pmin. length(x) is the number of elements in x, sum(x)
gives the total of the elements in x and prod(x) their product.
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Two statistical functions are mean(x), which evaluates to sum(x)/length(x) and var(x),
which gives the value sum((x-mean(x))^2)/(length(x)-1), the sample variance. If the
argument to var(: : :) is an n�p matrix the value is a p�p sample covariance matrix obtained
from regarding the rows as independent p-variate sample vectors.sort(x) returns a vector of the same size as x with the elements arranged in increasing order.
Other, more flexible, sorting facilities are available (see order(: : :) which produces a permu-
tation to do the sorting, and sort.list).

4.3 Generating Regular Sequences of Numbers.

S has a number of facilities for generating commonly used sequences of numbers. For ex-
ample 1:30 is the vector c(1,2,: : :,29,30). The colon operator has highest priority within
an expression, so, for example 2*1:15 is the vector c(2,4,6,: : :,28,30). Put n <- 10 and
compare the sequences 1:n-1 and 1:(n-1).

The construction 30:1 may be used to generate a backwards sequence.

The function seq(: : :) is a more general facility for generating sequences. It has five argu-
ments, only some of which may be specified in any one call. The first two arguments, if given,
specify the beginning and end of the sequence, and if these are the only two arguments given
the result is the same as the colon operator. That is, seq(2,10) is the same vector as 2:10.

Parameters to seq(: : :), and to many other S functions, can also be given in named form, in
which case the order in which they appear is irrelevant. The first two parameters may be namedfrom=value and to=value; thus seq(1,30), seq(from=1,to=30) and seq(to=30,from=1)
are all the same as 1:30. The next two parameters to seq(: : :) may be named by=value andlength=value, which specify a step size and a length for the sequence respectively. If neither
of these is given, the default by=1 is assumed.

For example> seq(-5, 5, by=.2) -> s3
generates in s3 the vector c(-5.0,-4.8,-4.6,: : :,4.6,4.8,5.0). Similarly> s4 <- seq(length=51, from=-5, by=.2)
generates the same vector in s4.

The fifth parameter may be named along=vector, which if used must be the only parameter,
and creates a sequence 1, 2, : : :, length(vector), or the empty sequence if the vector is
empty (as it can be).

A related function is rep(: : :) which can be used for replicating a structure in various com-
plicated ways. The simplest form is> s5 <- rep(x, times=5)
which will put five copies of x end-to-end in s5.
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4.4 Logical Vectors. Missing Values

As well as numerical vectors, S allows manipulation of logical quantities. The elements of a
logical vector have just two possible values, represented formally as F (for ‘false’) and T (for
‘true’). (TRUE and FALSE are also valid representations.)

Logical vectors are generated by conditions. For example> temp <- x>13
sets temp as a vector of the same length as xwith values F corresponding to elements of xwhere
the condition is not met and T where it is.

The logical operators are <, <=, >, >=, == for exact equality and != for inequality. In addition ifc1 and c2 are logical expressions, then c1 & c1 is their intersection (and), c1 | c2 is their union
(or) and ! c1 is the negation of c1.

Logical vectors may be used in ordinary arithmetic, in which case they are coerced into numeric
vectors, F becoming 0 and T becoming 1. However there are situations where logical vectors
and their coerced numeric counterparts are not equivalent.

In some cases the components of a vector may not be completely known. When an element
or value is “not available” or a “missing value” in the statistical sense, a place within a vector
may be reserved for it by assigning it the special value NA. In general any operation on an NA
becomes an NA. The motivation for this rule is simply that if the specification of an operation
is incomplete, the result cannot be known and hence is not available.

The function is.na(x) gives a logical vector of the same size as x with value T if and only if
the corresponding element in x is NA.> ind <- is.na(z)
4.5 Character Vectors

Character quantities and character strings are used frequently in S, for example as plot labels.
They are denoted by a sequence of characters delimited by the double quote character. E.g."x-values","New iteration results". Single quotes can also be used, in matching pairs.

Character strings may be collected into a vector by the c(: : :) function; examples of their use
will emerge frequently.

The paste(: : :) function takes an arbitrary number of character string arguments and concate-
nates them into a single character string. Any numbers given among the arguments are coerced
into character strings in the same way they would be if they were printed. The arguments are
by default separated in the result by a single blank character, but this can be changed by the
named parameter, sep=string, which changes it to string, possibly empty.

For example> labs <- paste(c("X","Y"), 1:10, sep="")
makes labs the character vector ("X1", "Y2", "X3", : : : , "X9", "Y10"). Note in par-
ticular that recycling of short vectors takes place here too; thus c("X", "Y") is repeated 5
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times to match the sequence.

The elements of a vector can be named (as well as numbered) by assigning a character vector
to its names attribute, e.g.> costs <- c(26, 45, 67, 33, 51)> names(costs) <- c("banana", "apple", "orange", "fig", "kiwi")> costsbanana apple orange fig kiwi26 45 67 33 51
4.6 Index Vectors. Selecting and Modifying Subsets of a Data Set

Elements of a vector may be extracted by specifying the element in square brackets, e.g. x[5].
More generally, subsets of a vector (or any expression that evaluates to a vector) may be se-
lected by appending to the name of the vector an index vector in square brackets. Such index
vectors can be any of four distinct types:

1. A logical vector. In this case the index vector must be of the same length as the vector from
which elements are to be selected. Values corresponding to T in the index vector are
selected and those corresponding to F omitted. For example> y <- x[!is.na(x)]
creates (or re-creates) an object y which will contain the non-missing values of x, in the
same order. Note that if x has missing values, y will be shorter than x. Also> (x+1)[(!is.na(x)) & x>0] -> z
creates an object z and places in it the values of the vector x+1 for which the correspond-
ing value in x was both non-missing and positive.

2. A vector of positive integral quantities. In this case the values in the index vector must
lie in the the set f1, 2, : : : , length(x)g . The corresponding elements of the vector
are selected and concatenated, in that order, in the result. The index vector can be of any
length and the result is of the same length as the index vector. For example x[6] is the
sixth component of x and> x[1:10]
selects the first 10 elements of x (assuming length(x)� 10). Also> c("x","y")[rep(c(1,2,2,1),times=4)]
(an admittedly unlikely thing to do) produces a character vector of length 16 consisting
of "x", "y", "y", "x" repeated four times.

3. A vector of negative integral quantities. In this case the index vector specifies the values
to be excluded rather than included. Thus> y <- x[-(1:5)]
gives y all but the first five elements of x.
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4. A vector of character strings. This possibility only applies where an object has a names
attribute to identify its components. In this case a subvector of the names vector may be
used in the same way as the positive integral labels in 2.> lunch <- fruit[c("apple","orange")]
This option is particularly useful in connection with data frames (see x4.9).

An indexed expression can also appear on the receiving end of an assignment, in which case
the assignment operation is performed only on those elements of the vector. The expression
must be of the form vector[index vector] as having an arbitrary expression in place of the
vector name would not make sense.

The vector assigned must match the length of the index vector, and in the case of a logical index
vector it must again be the same length as the vector it is indexing.

For example> x[is.na(x)] <- 0
replaces any missing values in x by zeros and> y[y<0] <- -y[y<0]
has the same effect as> y <- abs(y)
4.7 Arrays

An array can be considered as a multiply subscripted collection of data entries of the same type,
for example numeric, logical or character string.

An array is defined by having a dimension vector, a vector of positive integers. If its length isk then the array is k–dimensional. The values in the dimension vector give the upper limits for
each of the k subscripts. The lower limits are always 1. Suppose, for example, z is a vector of
1500 elements. The assignment> dim(z) <- c(3,5,100)
allows z to be treated as a 3� 5� 100 array.

Other functions such as matrix(: : :) and array(: : :) are available for simpler and more nat-
ural looking assignments in special cases, e.g.> z <- array(z, c(3,5,100))> z <- matrix(z, 3, 5))
The values in the data vector give the values in the array in the same order as they would occur in
Fortran, that is, with the first subscript moving fastest and the last subscript slowest. For exam-
ple if the dimension vector for an array, say a, is c(3,4,2) then there are 3�4�2 = 24 entries
in a and the data vector holds them in the order a[1,1,1], a[2,1,1], : : : , a[2,4,2],a[3,4,2]. To make life easier, matrix has a byrow=T parameter for data presented by row
rather than by column.
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Individual elements of an array may be referenced by giving the name of the array followed
by the subscripts in square brackets, separated by commas. More generally, subsections of an
array may be specified by giving a sequence of index vectors in place of subscripts; however if
any index position is given an empty index vector, then the full range of that subscript is taken.
Thus a[2,,] is a 4� 2 array with dimension vector c(4,2) and data vectora[2,1,1], a[2,2,1], a[2,3,1], a[2,4,1], a[2,1,2], a[2,2,2], a[2,3,2], a[2,4,2],

in that order. a[,,] stands for the entire array, which is the same as omitting the subscripts
entirely and using a alone.

Arrays may be used in arithmetic expressions and the result is an array formed by element-by-
element operations on the data vector. The dimension vectors of operands generally need to be
the same, and this becomes the dimension vector of the result. So if A, B and C are all similar
arrays, then> D <- 2*A*B + C + 1
makes D a similar array with data vector the result of the evident element-by-element opera-
tions. The matrix multiplication operator is %*% .

There are extensive matrix manipulation facilities, including transposes and eigenvalue,
Cholesky, QR and singular-value decompositions. See help on t, eigen, chol, qr and svd.

Any dimension of an array can be given a set of names using dimnames, but is usually easier
to use the facilities of data frames.

Matrices can be built up from given vectors and matrices by the functions cbind(: : :) andrbind(: : :). Informally, cbind(: : :) forms matrices by binding together vectors or matrices
horizontally, or column-wise, and rbind(: : :) vertically, or row-wise.

4.8 Lists

An S list is an object consisting of an ordered collection of objects known as its components.
There is no particular need for the components to be of the same mode or type, and, for example,
a list could consist of a numeric vector, a logical value, a matrix, a character array, a function,
and so on.

Components are always numbered and may always be referred to as such. If trees is a list,
then the function length(trees)gives the number of (top level) components it has, specified
as trees[[1]], trees[[2]] and so on.

Components of lists may also be named, and in this case the component may be referred to
either by giving the component name as a character string in place of the number in double
square brackets, or, more conveniently, by giving an expression of the form> name$component name

for the same thing. This is a very useful convention as it makes it easier to get the right com-
ponent if you forget the number, and is strongly advised. You can find out the names of the
components by> names(names)
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and this generates much less output that printing the object, which will achieve the same pur-
pose.

The names of components may be abbreviated down to the minimum number of letters needed
to identify them uniquely. Most of the datasets are in fact lists (or can be treated as lists), so we
could refer to the component diam of the trees data as trees$d. Similarly, many S functions
return lists of results.

It is important to distinguish trees[[1]] from trees[1]. “[[: : :]]” is the operator used to
select a single element of a list, whereas “[: : :]” is a general subscripting operator for vectors.
Fortunately, numbered components are needed very rarely.

New lists may be formed from existing objects by the function list(: : :). An assignment of
the form> trees <- list(diam=tree.d, height=tree.h, volume=tree.v)
sets up a list tree of 3 components using the existing objects tree.d, tree.h and tree.v
for the components and giving them names as specified by the argument names (which can be
chosen freely). If these names are omitted, the components are numbered only.

Lists can be attach-ed as well as directories, and this allows their components to be accessed
as if they were stand-alone entities. Thus in the trees example we could have> attach(trees)> mean(height)
It is wise to detach("trees") after use to avoid any nasty surprises.

4.9 Data Frames

Data frames were introduced in the August 1991 release of S, and can be thought of as closely-
coupled lists of data vectors of the same length. Unlike matrices, the data vectors can be of
different types, including character data. Both the rows and columns can be labelled. Consider
the data frame road from library(ripley):> road deaths drivers popden rural temp fuelAlabama 968 158 64.0 66.0 62 119.0Alaska 43 11 0.4 5.9 30 6.2................Mo 1289 234 63.0 100.0 40 180.0Mont 259 38 4.6 72.0 29 31.0
which has both row and column labels. The columns can be treated as components of a list:> road$rural[1] 66.0 5.9 33.0 73.0 118.0 73.0 5.1 3.4 0.0 57.0 83.0 40.0[13] 102.0 89.0 100.0 124.0 65.0 40.0 19.0 29.0 17.0 95.0 110.0 59.0[25] 100.0 72.0
and the structure can be treated as a two-dimensional array:



4.9 Data Frames 13> road[2,4]Alaska5.9> road["Mo", "temp"]Mo40> road["Mo",]deaths drivers popden rural temp fuelMo 1289 234 63 100 40 180
Note how the row label is carried along.

Data frames can be attach-ed just as lists can, and this allows their columns to be accessed as
if they were named vectors.

A data frame can be created from vectors and matrices by the data.frame function. For ex-
ample:> treeframe <- data.frame(diam=tree.d, height=tree.h, volume=tree.v)
If the columns are not named, they pick up the names of the vectors, so> treeframe <- data.frame(tree.d,tree.h,tree.v)
givestree.d tree.h tree.v1 8.3 70 10.32 8.6 65 10.33 8.8 63 10.24 10.5 72 16.45 10.7 81 18.8......
Character vectors given to data.frame are automatically treated as factors (see x10), unless
specified within a I() function.



Reading data into S 14

5 Reading data into S

Data objects will usually be read as values from external files. This is done most conveniently
with the scan(: : :) function. To read a vector from the keyboard we can use> counts <- c(2,3,3,4,3,2,1,3,8,11,6,6,7,12,11,11,+ 117,121,47,22,85,98,43,20,119,209,68,43,67,99,46,33)
orcounts <- scan()2 3 3 4 3 2 1 3 8 11 6 6 7 12 11 11117 121 47 22 85 98 43 20 119 209 68 43 67 99 46 33
Input is terminated by a blank input line (from the terminal only, despite the documentation) or
by EOF (ctrl-D in Unix). To read in a character vector we specify the vector type by the second
argument:> diet <- scan(,"")D E A C B F C D F B A EF A C E D B B C E A F DE F B D C A A B D F E C
To read from a file specify its name as the first argument, for example> counts <- scan("chd.dat")
Now suppose that multiple data vectors of equal length are to be read in in parallel. For example
suppose that there are three vectors, the first of mode character and the remaining two of mode
numeric, and the file is input.dat. Use scan(: : :) to read in the three vectors as a list, as
follows> in <- scan("input.dat",list(id="", x=0, y=0))
The second argument is a dummy list structure that establishes the mode of the three vectors to
be read. The result, held in in, is a list whose (named) components are the three vectors read
in.

Matrices are usually read by row, as follows> X <- matrix(scan("light.dat"), ncol=5, byrow=T)
The argument skip= to scan can be used to skip header rows of files.

Data frames can be read from a file by the read.table function. The data file should be a
table in one of a number of formats:

1. A file such as rotifer.dat (page 39) which has a first row naming the columns, fol-
lowed by the table of numeric data can be read by> rotifer <- read.table("rotifer.dat", header=T)
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2. A file laid out like the listing of a data frame. This has a first header line, and rows which
contain the row label followed by the data for the columns, such asdeaths drivers popden rural temp fuelAlabama 968 158 64 66 62 119Alaska 43 11 0.4 5.9 30 6.2.............
Note that the header has one less entry than subsequent rows. This format is read by> road <- read.table("road.dat")

3. A table without any header. The row and column labels are then 1, : : : , m and V1,: : :Vn. However, if there exists a character column without duplicates, the first such is
taken as the row labels and removed as a column.

Sometimes it is necessary to read in character strings which contain spaces. This can be done
by separating the fields in the file by, for example, tabs or commas:> usroad <- scan("road.dat", sep="\t", list(state="", deaths=0,+ drivers=0, popden=0, rural=0, jantemp=0, fuel=0))
where\t is the usual Unix abbreviation for a tab character. This device also applies to read.table.

5.1 Writing out data

There are amny ways to write out data from S, for example the print, cat and format com-
mands. To write directly to a file, there are cat, write and, from S-Plus 3.2, write.table
which is usually the simplest method. This can write a dataframe, matrix or vector, with syntax> write.table(data, file="", sep=",")
and further arguments can be found in the help page. By default it writes out comma-separated
items on rows, but the separator can be changed to space or tab ("\t" in Unix).

The function write writes a vector, with syntax> write(data, file="data", ncolumns=5)
for numeric data, and in one column for character data. To write out a matrix m, use> write(t(m), file="data", ncolumns=ncol(m))
The function format converts data to a line of characters, and can be used with write or cat
to construct custom reports.
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6 Graphics

The graphical facilities are central to S. The steps involved are as follows:

1. The type of terminal, or device, is declared to S at the beginning of the session:> openlook()
2. A command is issued to construct a plot from data. For example> plot(x,y)

specifies a simple point plot where x and y are vectors giving the x- and y-coordinates
of the points respectively. (The command includes a default automatic choice of axes,
scales, titles and plotting characters, all of which can be overridden with additional graph-
ical parameters that could be included as named arguments in the command.)

6.1 Graphical Parameters

Functions producing graphical output usually have optional additional named arguments that
can be specified to override some default parameter settings and hence modify the character-
istics of a plot. A short list of the main ones is as follows:axes=L If FALSE all axes are suppressed. Default TRUE, axes are automatically constructed.type="c" Type of plot desired. Values for c are:p for points only, (the default for function plot),l for lines only,b for both points and lines, (the lines miss the points),s, S for step functions (s specifies to change now, S to change just before the

next point),o for overlaid points and lines,h for high density vertical line plotting, andn for no plotting (but axes are still found and set).xlab="string"ylab="string" Give labels for the x– and/or y–axes (default: the names, including suffices, of
the x and y coordinate vectors).sub="string"main="string" sub specifies a title to appear under the x–axis label and main a title for the top
of the plot in larger letters. (default: both empty).xlim=c(lo ,hi)ylim=c(lo, hi) Approximate minimum and maximum values forx– and/ory–axes settings. These
values are automatically rounded to make them “pretty” for axis labelling.

Other graphical parameters control the background characteristics of all subsequent plots and
are usually specified by a call to the function par(: : :). There are a great number of these
parameters and the command> help(par)
gives a complete list of them and their meanings. Some of the more commonly adjusted ones
are as follows:



6.2 Some Basic Plotting Functions 17lty=n Line type is n. If lines are being plotted, a variety of line types is available; n =1 means a solid line, n = 2, 3, : : : indicates a variety of broken line forms.pch="c" Specify the character to be used for plotting points (default: * for graphics ter-
minals, � for PostScript).mfrow=c(m,n)mfcol=c(m,n) multiple frames on the one plot. Instead of plotting just one graph per screen,
each screen (or page) will contain an array of m*n graphs forming an m�n grid.
If mfrow is used the screen is filled row-by-row and if mfcol is used it is filled
column-by-column. Useful if many graphs are to be inspected simultaneously
and high resolution is not necessary.pty="c" Specify the type of plotting region currently in effect. Possible values for c ares to generate a square plotting region;m (the default) to generate a maximal size plotting region.

6.2 Some Basic Plotting Functions

The elementary plotting functions are as follows:plot(x,y,: : :) Scatter plot of points with x– and y–coordinates given by the two
main parameters. The pair x,y may be replaced by a single list with
components labeled x and y, called a ‘plot list’.
Graphical parameters are particularly useful.points(x,y,: : :) Add points to an existing plot (possibly using a different plotting char-
acter. Follows on from a plot(: : :) command.lines(x,y,: : :) Add lines to an existing plot. Similar to points.
Note> plot(x,y); lines(spline(x,y))
will join the points of a plot by a cubic spline interpolation function.
(See help(spline) for further information.)text(x,y,labels,: : :) Add text to a plot at points given by x,y. Normally labels is an in-
teger or character vector in which case labels[i] is plotted at point(x[i],y[i]). The default is 1:length(x).
Note: This function is often used in the sequence> plot(x,y,type="n"); text(x,y)
The graphics parameter type="n" suppresses the plotting of points
but set up the axes, and the text(: : :) function supplies special char-
acters (in this case just the integers by default) for the points.abline(a,b,: : :)abline(h=c,: : :)abline(v=c,: : :)abline(lmobject,: : :) Draw a line in intercept and slope form, (a,b), across an existing plot.h=cmay be used to specify y–coordinates for the heights of horizon-
tal lines to go across a plot, and v=c similarly for the x–coordinates
for vertical lines.

6.3 Interaction with Plots

S-Plus allows users to interact with plots, by identifying points and by adding information at
places selected by mouse clicks.



6.4 Brush and Spin 18identify(x,y,labels) On a current plot of x,y, clicking the LEFT mouse button places
the appropriate string from label near the point which has been
clicked on. Click the MIDDLE mouse button to finish. If label
is omitted uses index numbers, and always returns the indices of
selected points.locator() Returns a list of vector coordinates of points clicked by the LEFT
mouse button. Click the MIDDLE mouse button to finish.locator(,"p") ditto, but plots the points as in plot.legend(locator(),...) Add a legend box at a mouse-selected point (one LEFT click). See
help page for the box contents and other options.locator() is often used with text to add annotation to plots, e.g.> text(locator(),"controls"); text(locator(),"cases")

6.4 Brush and Spin

These are S-Plus enhancements to allow dynamic manipulation of graphs. Spin allows three
columns chosen from a matrix of data vectors to be rotated in space.> help("state")> spin(state.x77)
Use the left mouse button to select three of the variables, then use the cross-shaped pad to rotate
the point cloud. Finally click on quit.> brush(state.x77, hist=T)
includes spin and a pairs plot. Additionally one can ‘brush’ by selecting points with the left
mouse button, and de-selecting them with the middle button. One can mark points in different
ways, with the four symbols, and even label points if label is selected.> brush(rbind(iris[,,1],iris[,,2],iris[,,3]))
Now select the first 50 points with one symbol and the last fifty with another. The intermediate
nature of the middle 50 then stands out.

6.5 Equally-scaled plots

It is sometime necessary to make geometrically-square plots, for example so that distances
can be assessed accurately. This is somewhat tricky, but done by the functions eqscplot inlibrary(ripley), which adjusts the axis scales to be equal within the current window shape.
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Figure 1: Screen dump of an openlook() window displaying brush on the iris data, with
different highlights for the three groups.
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7 Statistical Summaries

7.1 Arithmetical Summaries

Standard summaries such as mean, median and var are available. The var function will take a
data matrix and give the variance-covariance matrix, and cor computes the correlation matrix,
either from two vectors or a data matrix.

There are also standard functions max, min, range and quantile. The functions mean and cor
will compute trimmed summaries. More sophisticated robust summaries are available, such aslocation.m and scale.tau as well as via the robust library.

7.2 Histograms and Stem-and-Leaf Plots

The standard histogram function is hist(x, : : : )which plots a conventional histogram. More
control is available via the extra parameters. The parameter probability=Tgives a plot of unit
area rather than cell counts, and nclass sets the number of bins.

Densities can be estimated via the function density:hist(hstart, nclass=20, probability=T, ylim=c(0,0.02))lines(density(hstart))lines(density(hstart, width=20), lty = 3)
See figure 2.
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Figure 2: A histogram of hstart with two density estimates overlaid.
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A stem-and-leaf plot is an enhanced histogram:> stem(hstart)N = 108 Median = 133.85Quartiles = 105.2, 158.8Decimal point is 1 place to the right of the colon5 : 56 : 22397 : 557998 : 2335679 : 123577910 : 0045611 : 0456812 : 02346666777789913 : 011234445679914 : 122233344799915 : 001345816 : 015917 : 6618 : 2719 : 7720 : 0133344566721 : 3822 : 6823 : 14
Apart from giving a visual picture of the data, this gives more detail. The actual data, in sorted
order, is roughly 55, 62, 62, 63, 69, : : : and this can be read off the plot. Sometimes the
pattern of numbers (all odd?) gives clues. Quantiles can be computed (roughly) from the plot.

7.3 Boxplots

A boxplot is a way to look at the overall shape of a set of data. The central box shows the data
between the quartiles, with the median represented by a line. ‘Whiskers’ go out to the extremes
of the data, and very extreme points are shown by themselves. It is also possible to plot boxplot
for groups side-by-side:> library(ripley)> boxplot(split(nottem, cycle(nottem)), names=month.abb)
divides a time-series into months, and plots the boxplots for each month on one plot. See fig-
ure 3. Other styles of boxplot are available—see the help page.
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Figure 3: Boxplots for months of nottem data.

8 Distributions

S has functions built it to (approximate) the density, cumulative distribution function and quan-
tile function (the inverse of the CDF) for many standard distributions. There are also function
to simulate samples from these distributions. The first letter of the name indicates the function,
e.g. dnorm, pnorm, qnorm, rnorm respectively.

Distributions available are:

Distribution S name parameters

beta beta shape1, shape2
binomial binom size, prob
Cauchy cauchy location, scale
chisquare chisq df
exponential exp rate
F f df1,df2
gamma gamma shape
geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis loc, scale
negative binomial nbinom size, prob
normal norm mean, sd
normal range nrange size, sd
Poisson pois lambda
stable stab index, skewness
T t df
uniform unif min, max
Weibull weibull shape, scale
Wilcoxon wilcox m, n
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The function sample re-samples from a data vector, with or without replacement.

8.1 Q-Q Plots

One of the best ways to compare the distribution of a sample x with a distribution is to use a
Q-Q plot, of which the normal probability plot is the best-known example. Q-Q plots can also
be used to compare two samples. For a sample x the quantile function is the inverse of the
empirical CDF, that is

quantile(p) = min(z j proportion p of the data � z)
The function qqplot(x, y, : : :) plots the quantile functions of two samples x and y against
each other, and so compares two samples. The function qqnorm(x) replaces one of the samples
by a sample at the quantiles of a standard normal distribution. This idea can be applied quite
generally. For example, to test a sample against a t9 distribution, we useplot( qt(ppoints(x),9), sort(x) )
where ppoints computes the appropriate set of probabilities for the plot.

The function qqline helps assess how straight a qqnorm plot is by plotting a straight line
through the upper and lower quartiles. (See the example in x3.)
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9 Classical Statistics

S-Plus 3.1 has a section on classical statistics. The same functions are used to perform tests
and to calculate confidence intervals.

The table shows the amount of wear in a shoe experiment with 10 boys, an experiment reported
in Box, Hunter & Hunter (1977), Statistics for Experimenters. There were two materials (A andB) that were randomly assigned to the left or right shoe.boy A B1 13.2 (L) 14.0 (R)2 8.2 (L) 8.8 (R)3 10.9 (R) 11.2 (L)4 14.3 (L) 14.2 (R)5 10.7 (R) 11.8 (L)6 6.6 (L) 6.4 (R)7 9.5 (L) 9.8 (R)8 10.8 (L) 11.3 (R)9 8.8 (R) 9.3 (L)10 13.3 (L) 13.6 (R)
We can use these data to illustrate one-sample and paired and unpaired two-sample tests. The
rather voluminous output has been edited:> shoes <- scan(,list(A=0, B=0))1: 13.2 14.03: 8.2 8.85: 11.2 10.97: 14.3 14.29: 10.7 11.811: 6.6 6.413: 9.5 9.815: 10.8 11.317: 9.3 8.819: 13.3 13.621:> attach(shoes)> t.test(A, mu=10)One-sample t-Testdata: At = 0.8127, df = 9, p-value = 0.4373alternative hypothesis: true mean is not equal to 1095 percent confidence interval:8.876427 12.383573sample estimates:mean of x



Classical Statistics 2510.63> t.test(A)$conf.int[1] 8.876427 12.383573attr(, "conf.level"):[1] 0.95> wilcox.test(A, mu=10)Exact Wilcoxon signed-rank testdata: Asigned-rank statistic V = 34, n = 10, p-value = 0.5566alternative hypothesis: true mu is not equal to 10> t.test(A, B)Standard Two-Sample t-Testdata: A and Bt = -0.3689, df = 18, p-value = 0.7165alternative hypothesis: true difference in means is not equal to 095 percent confidence interval:-2.744924 1.924924sample estimates:mean of x mean of y10.63 11.04t.test(A, B, var.equal=F)> Welch Modified Two-Sample t-Testdata: A and Bt = -0.3689, df = 17.987, p-value = 0.7165alternative hypothesis: true difference in means is not equal to 095 percent confidence interval:-2.745046 1.925046sample estimates:mean of x mean of y10.63 11.04> t.test(A, B, paired=T)Paired t-Testdata: A and Bt = -3.3489, df = 9, p-value = 0.0085alternative hypothesis: true mean of differences is not equal to 095 percent confidence interval:-0.6869539 -0.1330461...



Classical Statistics 26> wilcox.test(A, B, paired=T)Wilcoxon signed-rank testdata: A and Bsigned-rank normal statistic with correction Z = -2.4495, p-value = 0.0143
The sample size is rather small, and one might wonder about the validity of the t-distribution.
An alternative for a randomized experiment such as this is to base inference on the permutation
distribution of d. Figure 4 shows that the agreement is very good. (As the computation of this
figure uses some subtle ideas in S, it is omitted: see Venables & Ripley (1994, Chapter 5).)
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Figure 4: Histogram and empirical CDF of the permutation distribution of the t-test in the shoes
example. The density and CDF of t9 are shown overlaid.

The list of classical tests is:binom.test chisq.test cor.test fisher.testfriedman.test kruskal.test mantelhaen.test mcnemar.testprop.test t.test var.test wilcox.test
Many of these have alternative methods – for cor.test there are methods "pearson","kendall" and "spearman".
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10 Handling Categorical Data

Consider a (fictitious) survey of shoppers in Britain. Amongst the variables collected for each
person surveyed are sex, age, TV area3, social class4, transport used for this trip to the shops,
and total spend at supermarkets. The possible values of these variables are

sex: M, F
age: –24, 25–44, 45–59, 60+
TV area: 1, : : : , 12
social: A, B, C1, C2
transport: car, bus, cycle, foot
spend: positive continuous

This provides examples of each of S’s types of categorical data structure. There are two main
structures, categories and factors. The latter were introduced in the August 1991 release, and
have almost entirely superseded the use of categories. A factor is regarded as a vector over the
set of levels which have no implied order. Thus sex, TV area and transport are all factors. How-
ever, TV area is coded by number rather than by the names of the companies. These variables
can be declared assex <- factor(sex.data)TV.area <- factor(TV.data)transport <- factor(transport.data)
Internally in S levels are numbered in alphabetical order, and when factors are used as treat-
ments in designed experiments, the order of levels may matter. For example, if we want to
contrast females with males (rather than vice versa) we need to specify the levels of the factor
explicitly:> sex <- factor(sex.data, levels=c("M","F"))
Social class is an ordered factor in that the classes are perceived as ordered, with “A” (profes-
sionals) regarded as highest. We can declare an order bysocial <- ordered(factor(social.data))levels(social) <- levels(social)[4:1]age <- ordered(factor(age.data),levels=c("-24", "25-44", "45-59", "60+"))
The first line orders the levels by the default (alphabetical) order. The second shows how the
set of levels may be changed, in this case by reversing the existing ordering. Age is an ordered
category for which it is necessary to specify the levels explicitly. Had age.databeen specified
as a continuous variable, it could have been categorized using cut (whose help page gives other
ways to produce the categories):age.cdata <- cut(age.data, c(0, 25, 45, 60, 99))age <- ordered(factor(age.cdata),levels=c("-24", "25-44", "45-59", "60+"))3Britain is covered by 12 commercial TV companies, so this provides a simple geographical variable.4Derived from occupation.
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Some of the functions for statistical models treat ordered factors in appropriate special ways.

10.1 The Function tapply(: : :) and Ragged Arrays

To continue the previous example, suppose we have want to summarize spend by some of the
factors To calculate the sample mean income for each age-group we can now use the special
function tapply(: : :):> spend.means <- tapply(spend, age, mean)
giving a means vector with the components labeled by the levels> spend.means-24 25-44 45-59 60+27.20 35.53 33.42 17.65
Suppose further we needed to calculate the standard errors of the mean spends. To do this we
need to write an S function to calculate the standard error for any given vector. We discuss
functions more fully in x12, but since there is an inbuilt function var(: : :) to calculate the
sample variance, such a function is a very simple one-liner, specified by the assignment:> stderr <- function(x) sqrt(var(x)/length(x))
After this assignment, the standard errors are calculated by> spend.stderr <- tapply(spend, age, stderr)
and the values calculated are thenspend.stderr-24 25-44 45-59 60+3.70 2.33 4.55 2.70
The function tapply(: : :) can be used to handle more complicated indexing of a vector by
multiple factors. For example, we might wish to split the spend by both age and sex:> tapply(spend, list(age, sex), mean)
The combination of a vector and a labelling factor is an example of what is called a ragged
array, since the subclass sizes are possibly irregular. When the subclass sizes are all the same
the indexing may be done implicitly and much more efficiently by using arrays. The functionapply is the analogue of tapply for arrays.

The pattern of our survey can be seen by the table function, which takes a listing of factors
and returns the contingency table as an array, e.g.> table(sex, age, TV.area, social, transport)
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11 Loops and Conditional Execution

Commands may be grouped together in braces, {expr1; expr2;: : :; exprm}. The value of
the group is the result of the last expression in the group evaluated. Since such a group is also
an expression it may, for example, be itself included in parentheses and used as part of an even
larger expression, and so on. This facility is most often used with the control statements of this
section.

The control statements are very close in spirit to those of the C programming language, and
only a few are mentioned here. There is a conditional construction of the form> if (expr1) expr2 else expr3
where expr1 must evaluate to a logical value and the result of the entire expression is then evi-
dent.

There is also a for–loop construction which has the form> for (name in expr1) expr2
where name is a dummy, expr1 is a vector expression (often a sequence like 1:20), and expr2
is often a grouped expression with its sub-expressions written in terms of the dummy name.expr2 is repeatedly evaluated as name ranges through the values in the vector result of expr1.
As an example, suppose ind is a vector of class indicators and we wish to produce separate
plots of y versus x within classes. Use the help facility to understand the following:> yc <- split(y,ind); xc <- split(x, ind)> for (i in 1:length(yc)){plot(xc[[i]],yc[[i]]);+ abline(lsfit(xc[[i]],yc[[i]]))}
(Note the function split(: : :) which produces a list of vectors got by splitting a larger vector
according to the classes specified by a factor.)

Other looping facilities include the> repeat expr

statement and the> while (condition) expr

statement. The break statement can be used to terminate any loop abnormally, and next can
be used to discontinue one particular cycle.

Loops in S are often memory-hungry, and care may be needed not to use up all of your com-
puter’s memory. Expert advice is necessary on work-arounds.
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12 Writing Your Own Functions

As we have seen informally in x10.1, the S language allows the user to create his or her own
functions. These are true S functions that are stored in a special internal form and may be used
in further expressions and so on. In the process the language gains enormously in power, conve-
nience and elegance. Most of the functions supplied as part of the S system, such as mean(: : :)
and var(: : :) and so on, are themselves written in S and thus do not differ materially from user
written functions. (However, increasingly such functions are being re-written as internal func-
tions to gain efficiency.) Listing these functions (by printing their name without parentheses)
is a very fruitful way to gain hints for writing your own functions.

A function is defined by an assignment of the form> name <- function(arg1, arg2, : : :) expression

The expression is an S expression, (usually a grouped expression), that uses the arguments,
argi, to calculate a value. The value of the expression is the value returned for the function. A
call to the function then takes the form name(expr1, expr2,: : : ) and may occur anywhere a
function call is legitimate.

For example, the IQR function in library(robust) is defined as:IQR <- function(y){ r <- quantile(y, c(.25, .75))r[2] - r[1]}
This first computes the quartiles, then returns the last value computed, their difference.

Note that any ordinary assignments done within the function are temporary and lost after exit
from the function. Thus r is not left behind, and does not affect any other object r.

If global and permanent assignments are intended within a function, then the ‘superassign-
ment’ operator, ‘<<-’ can be used. See the help documentation for details, and see also thesynchronize() function.

As a second example of a useful function, consider a function to evaluate the ‘Huber proposal
2’ robust estimator(s) of location and/or scale:hubers <- function(y, k = 1.5, mu, s, initmu = median(y), tol = 1.0e-6){ y <- y[!is.na(y)]n <- length(y)if(missing(mu)) {mu0 <- initmun1 <- n-1} else {mu0 <- mumu1 <- mun1 <- n}if(missing(s)) {



Writing Your Own Functions 31s0 <- mad(y)} else {s0 <- ss1 <- s}th <- 2 * pnorm(k) - 1beta <- th + k^2 * (1 - th) - 2 * k * dnorm(k)repeat {yy <- pmin(pmax(mu0 - k * s0, y), mu0 + k * s0)if(missing(mu)) mu1 <- sum(yy)/nif(missing(s)) {ss <- sum((yy - mu1)^2)/n1s1 <- sqrt(ss/beta)}if((abs(mu0 - mu1) < tol * s0) && abs(s0 - s1) < tol * s0)breakmu0 <- mu1s0 <- s1}list(mu = mu0, s = s0)}
This allows either of the location mu and scale s to be specified. Optional arguments are the
parameter k, the initial value for mu and a convergence tolerance. The first line removes all
missing values. The missing() function checks if a parameter is supplied. Two constants are
then calculated as functions of k. The rest of the function is a loop. In general loops are ineffi-
cient in S and should be avoided if at all possible, but here we have no choice as the calculation
is iterative. Finally the function returns two components, the location and scale.

It is sometimes useful to be able to time commands:cputime <- function(x) sum(unix.time(x)[-3])elapsed <- function(x) unix.time(x)[3]
which return the total cpu time and the elapsed time taken by a command or sequence of com-
mands enclosed in {...}. Note: as these are functions, assignments inside them are in the
frame of the function rather than permanent. Alternatively, use proc.time() before and after
a group of commands.
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13 Statistical Models

These facilities form the heart of the 1991 version of S. They are based on object-oriented ex-
tensions, so that generic functions such as print know what to do with the results of various
models. The two most basic notions are a data frame (x4.9) and a model formula.

13.1 Model Formulas

A model formula couples a y-vector with a model expressed in a terminology very similar to
that of GLIM and GENSTAT. The form is> loss ~ hardness + tens
for the linear regression of loss on hardness and tens. Factors are replaced by a set of in-
dicator variables for the regression, and can interact via the : operator (not : as this is a valid
character in a variable name). Thus we can have all the following constructs:> time ~ poison + treatment + poison:treatment equivalent to> time ~ poison * treatment> strength ~ yarns/bobbins nested layout> gain ~ group + initial parallel lines> conc ~ -1 + reading line thorough the origin> conc ~ poly(reading, 2) quadratic polynomial> conc ~ ns(reading, 4, intercept=T) natural spline> conc ~ s(reading) smooth function, for gam
The syntax of a linear-model fit islm(model formula, data frame)
where the names in the model formula refer to columns of the data frame, which can be omitted
if it has already been attached. For example> library(ripley)> attach(rubber)> tyres.lm <- lm(loss ~ hard + tens)> summary(tyres.lm)> anova(tyres.lm)> coefficients(tyres.lm)> plot(fitted(tyres.lm), resid(tyres.lm))
This show how to extract information from a fit by the use of ancillary functions. There are no
standard ancillary functions for standardized and Studentized residuals, but I have added them
as stdres() and studres() in library(ripley).
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13.2 One-way Layouts

The analysis of one-way layout is best illustrated by an example. The table gives data on ob-
served concentrations (ng/ml) of a chemical in groups of 10 patients after oral administration
of almitrine bismesylate: drug dose (mg)subject 25 50 100 2001 34 92 256 2292 46 150 271 2323 50 81 270 2884 49 155 120 1955 21 85 333 3546 52 95 198 2887 30 95 109 2888 29 82 140 1709 27 110 147 52210 51 99 196 296> stdev <- function(x) sqrt(var(x)) Function to compute st. dev.> chemical <- scan("chemical.dat")> dose <- rep(c(25, 50, 100, 200), 10) Label the observations by dose> group <- factor(dose) Make a factor from the doses> boxplot(split(chemical, dose))> tapply(chemical, dose, mean)> tapply(chemical, dose, stdev)> chems <- data.frame(group, chemical) set up for AOV> chems.aov <- aov(chemical ~ group, chems)> summary(chems.aov) print out table> coefficients(chems.aov) and the parameters> chems.aov <- aov(log(chemical) ~ group, chems) and on log scale> summary(chems.aov)> summary(aov(log(chemical) ~ log(dose)+group, chems))

test for linearity of response

which gives> summary(chems.aov)Df Sum of Sq Mean Sq F Value Pr(F)group 3 356084.5 118694.8 28.91804 1.069219e-09Residuals 36 147762.9 4104.5> coefficients(chems.aov)(Intercept) group1 group2 group3158.375 32.75 44.11667 42.60833> summary(chems.aov)Df Sum of Sq Mean Sq F Value Pr(F)



13.2 One-way Layouts 34group 3 22.93801 7.646003 74.7226 1.554312e-15Residuals 36 3.68371 0.102325> summary(aov(log(chemical) ~ log(dose)+group, chems))Df Sum of Sq Mean Sq F Value Pr(F)log(dose) 1 21.87397 21.87397 213.7692 0.00000000group 2 1.06404 0.53202 5.1993 0.01038375Residuals 36 3.68371 0.10233
The parameterization of linear models for designed experiments is a little tricky. The usual
parameterization is to impose a ‘sum to zero’ constraint on the parameters for a factor. GLIM
sets the parameter for the first level to zero, so that parameters for the the other levels are differ-
ences between that level and the first. By default S uses the Helmert parameterization, which
compares the second and subsequent levels to the average of lower levels. The usual parame-
terization can be gotten as default by setting> options(contrasts=c("contr.sum", "contr.poly"))
and the GLIM parameterization by> options(contrasts=c("contr.treatment", "contr.poly"))
Of course, the parameterization only affects the coefficients, not the fitted values, residuals,: : : . The contrasts for a particular term in a fit can be changed by the C() function, e.g.C(group, sum) or using contrasts.

There is a ‘clever’ way to test for linearity using a re-parameterization of the factor group as an
ordered factor, for which the default parameterization is polynomial in f1, : : :, #(levels)g.
(This relies on log(dose) having levels in an arithmetic progression. One could always usepoly(log(dose),3) in place of ldose.)> ldose <- ordered(factor(log(dose)))> summary.lm(aov(log(chemical) ~ ldose, chems))
(As far as I can see the use of summary.lm is necessary to get results for the individual coeffi-
cients.) This shows that the response can be regarded as quadratic in log(dose):> summary.lm(aov(log(chemical) ~ ldose, chems))Call: aov(formula = log(chemical) ~ ldose, data = chems)Residuals:Min 1Q Median 3Q Max-0.5706 -0.2187 -0.001092 0.2806 0.6481Coefficients: Value Std. Error t value Pr(>|t|)(Intercept) 4.7750 0.0506 94.4089 0.0000ldose.L 1.4790 0.1012 14.6208 0.0000ldose.Q -0.3254 0.1012 -3.2168 0.0027ldose.C 0.0228 0.1012 0.2255 0.8228Residual standard error: 0.3199 on 36 degrees of freedomMultiple R-Squared: 0.8616



13.3 Designed Experiments 35F-statistic: 74.72 on 3 and 36 degrees of freedom,the p-value is 1.554e-15Correlation of Coefficients:(Intercept) ldose.L ldose.Qldose.L 0ldose.Q 0 0ldose.C 0 0 0
13.3 Designed Experiments

The central concept for designed experiments is a factor. Consider the famous Box-Cox poi-
sons data (survival times (in hours) of animals with 3 poisons and 4 antidotes, from Box & Cox
(1964), J. Roy. Statist. Soc. B26, 211–252 and Box, Hunter & Hunter (1977), Statistics for Ex-
perimenters). The function fac.design generates the rows, columns and so on – consult its
help page for full details.stimes <- scan("poison.dat") data in hoursfnames <- list(treat=LETTERS[1:4], repl=1:4, poison=c("I","II","III"))poisons<- data.frame(fac.design(c(4,4,3),fnames),stimes)par(mfrow=c(3,2))plot.design(poisons) plot main effectsplot.design(poisons, fun=median) and using mediansattach(poisons)plot.factor(stimes ~ treat + poison,data=poisons) box plotsinteraction.plot(treat, poison, stimes)interaction.plot(treat, poison, stimes, fun=median)poisons.aov <- aov(stimes ~ treat * poison) full fitfits <- fitted(aov(stimes ~ treat + poison)) additive fit for 1dofnasummary(poisons.aov)par(mfrow=c(2,2))hist(resid(poisons.aov))qqnorm(resid(poisons.aov))plot(fitted(poisons.aov),resid(poisons.aov))summary(aov(stimes ~ treat + poison + fits^2 + treat:poison))
which gives> summary(poisons.aov)Df Sum of Sq Mean Sq F Value Pr(F)treat 3 92.1206 30.70688 13.80558 0.0000038poison 2 103.3012 51.65062 23.22174 0.0000003treat:poison 6 25.0138 4.16896 1.87433 0.1122506Residuals 36 80.0725 2.22424
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Figure 5: Plots for Poison data



13.3 Designed Experiments 37> summary(aov(stimes ~ treat + poison + fits^2 + treat:poison))Df Sum of Sq Mean Sq F Value Pr(F)treat 3 92.1206 30.70688 13.80558 0.0000038poison 2 103.3012 51.65062 23.22174 0.0000003I(fits^2) 1 15.3724 15.37242 6.91132 0.0125158treat:poison 5 9.6413 1.92827 0.86693 0.5127325Residuals 36 80.0725 2.22424
indicating the need for transformation. The I(...) function protects the argument from ex-
pansion; (treat+poison)^2 is equivalent to treat+poison+treat:poison and generally(factors)^n gives up to n-th order interactions.

There is no direct Box-Cox function, but we can do the operations by hand. They are quite
slow (25 secs on a SparcStation IPC), due to the overhead of calling the aov function:xl <- seq(-2,1,by=0.1)loglik <- as.vector(xl)n <- length(stimes)nlngm <- log(prod(stimes))for(i in 1:length(xl)){if(abs(xl[i]) > 0.01){ss <- sum((aov(stimes^xl[i] ~ treat + poison)$resid)^2)loglik[i] <- n*log(abs(xl[i])) - n/2*log(ss) + (xl[i]-1)*nlngm}else{ss <- sum((aov(log(stimes) ~ treat + poison)$resid)^2)loglik[i] <- - n/2*log(ss) - nlngm}}plot(xl, loglik, xlab = "Lambda", ylab = "Log Likelihood", type = "l")lambdahat <- loglik[loglik == max(loglik)]limit <- lambdahat - 0.5 * qchisq(0.95, 1)abline(limit, 0)scal <- (par("usr")[4] - par("usr")[3])/par("pin")[2]text(c(xl[1]), limit + 0.1 * scal, " 95%")
A more efficient way (4 secs) is to use the function BoxCox in the library ripley:> library(ripley)> BoxCox(stimes ~ treat + poison)
Now consider a Latin square. Six litters of six piglets were ranked in order of birthweight,
providing a 6 � 6 table, and each piglet given one of 6 dietary supplements in a Latin square.
The weight gain (in kg) over 12 weeks is given in the table.



13.3 Designed Experiments 38> diet <- scan(,"")D E A C B FC D F B A EF A C E D BB C E A F DE F B D C AA B D F E C> wtgain <- scan()5.74 7.21 5.92 6.58 7.24 4.835.92 5.74 7.88 6.53 6.73 6.058.18 5.87 5.41 7.49 7.44 6.433.58 5.21 5.61 4.39 7.63 5.446.05 8.16 6.27 5.84 6.71 5.774.95 6.35 5.56 7.50 7.04 6.22> diet <- factor(diet)> latin <- data.frame(fac.design(c(6,6), list(brank=1:6,litter=1:6)),+ diet, wtgain)> plot.design(latin)> Diet <- C(diet, treatment)> latin.aov <- aov(wtgain ~ brank + litter + Diet, latin)> summary(latin.aov)> summary.lm(latin.aov)
The last command gives t-values for the contrasts (diet ?� diet A).> summary(latin.aov)Df Sum of Sq Mean Sq F Value Pr(F)brank 5 7.92405 1.584809 2.788687 0.04545633litter 5 7.72041 1.544083 2.717023 0.04962477Diet 5 11.61751 2.323503 4.088518 0.01015490Residuals 20 11.36599 0.568299> summary.lm(latin.aov)Call: aov(formula = wtgain ~ brank + litter + Diet, data = latin)Residuals:Min 1Q Median 3Q Max-2.051 -0.2906 0.1211 0.3715 0.9061Coefficients: Value Std. Error t value Pr(>|t|)(Intercept) 5.6050 0.3078 18.2122 0.0000...............DietB 0.4617 0.4352 1.0607 0.3015DietC 0.4033 0.4352 0.9267 0.3651DietD 0.3550 0.4352 0.8156 0.4243DietE 0.9700 0.4352 2.2287 0.0375DietF 1.7583 0.4352 4.0399 0.0006..............
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13.4 Generalized Linear Models

The functions lm and aov have extensions glm which fits generalized linear models, and gam
which further extends this to allow semi-parametric smooth functions in the explanatory vari-
ables. We can, for example, fit the poisons data by a gamma GLM:attach(poisons)poisons.glm <- glm(stimes ~ treat + poison, family=Gamma)

note the ‘G’summary(poisons.glm)anova(poisons.glm) analysis of deviance table

Once again there is a whole range of ancillary functions such as deviance, predict andresiduals. The latter will produce a four types of residuals, but uses deviance residuals by
default.

The family argument is also used to specify other aspects of the fit such as the link function.
For example, one can have family=binomial(link=probit)). With the binomial the re-
sponse can either be a factor (taken as first level vs the rest) or a matrix with two columns giving
the number of successes and failures. There is a quasi family allowing user-defined models,
and a robust family generator allowing robust fitting. The scope for ingenuity is unlimited!

Binary Data

The following example is taken from D. Collett (1991) Modelling Binary Data, page 217.
Numbers of rotifers falling out of suspension for two species (Polyartha major and Keratella
cochlearis) are given for different fluid densities in the table, as file rotifer.dat:density pm.y pm.tot kc.y kc.tot1.019 11 58 13 1611.020 7 86 14 2481.021 10 76 30 2341.030 19 83 10 2831.030 9 56 14 1291.030 21 73 35 1611.031 13 29 26 1671.040 34 44 32 2861.040 10 31 22 1171.041 36 56 23 1621.048 20 27 7 421.049 54 59 22 481.050 20 22 9 491.050 9 14 34 1601.060 14 17 71 741.061 10 22 25 451.063 64 66 94 1011.070 68 86 63 681.070 488 492 178 1901.070 88 89 154 154
An annotated session follows. Several points need further explanation.
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The parametrizations need careful consideration. By default S uses a linear-model parameter-
ization, contrasting each level with the average of the previous levels. This is less useful for
GLMs. The first way out below is to remove the overall mean (the -1 term) which forces sepa-
rate means for each species. We can also change to the GLIM parameterization by the options
line.

There is a catch here. By default factor() numbers the factor levels in alphabetical order, so
we have to force the order we want (see x10).
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Figure 6: Plots for Rotifer data. The square symbols and dashed line indicate species Polyartha
major.rotifers <- read.table("rotifer.dat", header=T)rotifers list the data frameattach(rotifers)kc.prop <- kc.y/kc.tot compute the proportionspm.prop <- pm.y/pm.tot

and plot themplot(density, pm.prop, type="n", ylim = c(0,1))points(density, pm.prop, pch=0)points(density, kc.prop)
fit separate models for each speciesglm.pm <- glm(cbind(pm.y, pm.tot-pm.y) ~ density, binomial(logit))glm.kc <- glm(cbind(kc.y, kc.tot-kc.y) ~ density, binomial(logit))glm.pm; glm.kc bare summaries
Now combine the two speciesspecies <- factor(c(rep("pm",20), rep("kc",20)),levels= c("pm", "kc"))rotifer2 <- data.frame(dens = c(density, density),yes = c(pm.y, kc.y), tot = c(pm.tot, kc.tot), species)attach(rotifer2)glm.rot <- glm(cbind(yes, tot-yes) ~ dens * species, binomial(logit))



13.4 Generalized Linear Models 41glm.rot Note the parameterization usedglm.rot <- glm(cbind(yes, tot-yes) ~ -1+dens * species, binomial(logit))glm.rot separate means for each speciesoptions(contrasts=c("contr.treatment", "contr.poly"))glm.rot <- glm(cbind(yes, tot-yes) ~ dens*species, binomial(logit))glm.rotsummary(glm.rot)anova(glm.rot) over-dispersion, but a common slope
looks OKglm.rot <- glm(cbind(yes, tot-yes) ~ dens + species, binomial(logit))lines(density, fitted(glm.rot)[species=="kc"])lines(density, fitted(glm.rot)[species=="pm"], lty=3)
these lines are rather crude, so try harder!xden <- seq(1.02, 1.07, 0.001)yden <- predict(glm.rot, data.frame(dens=rep(xden,2),species=factor(c(rep("pm", 51), rep("kc", 51)),levels= c("pm", "kc"))), type="response")lines(xden, yden[1:51], lty=3)lines(xden, yden[52:102], lty=3)

Poisson Data

We consider the log-linear analysis of a contingency table. As this has two ‘history’ factors
and two levels of the the response, it could also be treated as binomial data. The response is
the occurrence of coronary heart disease. The table is of the form:

blood pressure
serum

chd cholesterol 1 2 3 4

yes 1 2 3 3 4
2 3 2 1 3
3 8 11 6 6
4 7 12 11 11

no 1 117 121 47 22
2 85 98 43 20
3 119 209 68 43
4 67 99 46 33

with log-linear analysis:num <- scan()2 3 3 4 3 2 1 3 8 11 6 6 7 12 11 11117 121 47 22 85 98 43 20 119 209 68 43 67 99 46 33fnames <-list(press=1:4, serum=1:4, chd=c("y","n"))kk <- data.frame(fac.design(c(4,4,2),fnames), num)



13.5 Updating and Selecting Models 42kk.glm <- glm(num ~ serum*press*chd, family=poisson, data=kk)anova(kk.glm, test="Chi")kk.glm1 <- update(kk.glm, . ~ .-serum:press:chd)par(mfrow=c(1,2)); plot(kk.glm1)
The anova command gives an analysis of deviance for glm objects:> anova(kk.glm, test="Chi")Analysis of Deviance TablePoisson modelResponse: numTerms added sequentially (first to last)Df Deviance Resid. Df Resid. Dev Pr(Chi)NULL 31 1644.227serum 3 77.370 28 1566.856 0.0000000press 3 318.287 25 1248.570 0.0000000chd 1 1169.609 24 78.960 0.0000000serum:press 9 24.449 15 54.511 0.0036454serum:chd 3 30.452 12 24.059 0.0000011press:chd 3 19.284 9 4.775 0.0002388serum:press:chd 9 4.775 0 0.000 0.8534820
13.5 Updating and Selecting Models

There are number of facilities to update models. The update function takes a result of a pre-
vious fit and changes the model in some way.add1 and drop1 show the (approximate) effects of adding and dropping single terms, and step
runs a fairly general stepwise fitting procedure. (Note that S-Plus 3.x has a separate stepwise
function for multiple regression.)
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14 Multivariate Analysis

S-Plus is particularly rich is functions for exploratory multivariate analysis, such as pairs,brush and spin. There are also functions for classical multivariate analysis.

Clustering

The workhorses here are distwhich computes distance matrices (also used in cmdscale) andhclust which computes a cluster tree by single-, average- or complete linkage.dist Distance matrix calculationshclust Hierarchical clusteringcutree Create groups from a cluster treeplclust Plot a cluster treelabclust Label a cluster tree plotclorder Re-order leaves of a cluster treesubtree Extract part of a cluster treemclust ”model-based” clusteringmclass auxiliary functionsmreloc
Graphical Methods

This is a varied collection of functions for displaying multivariate data.cmdscale Classical multi-dimensional scalingfaces Chernoff’s facesmstree Minimal spanning treestars Star plotsbiplot Biplot (v 3.2)

Two analyses of socio-economic data on Swiss cantons:library(ripley)d <- dist(swiss.x)x <- cmdscale(d)c1 <- x[ ,1]; c2 <- x[ ,2]eqscplot(c1, c2, type="n") # from library(ripley)text(c1, c2, seq(c1))h <- hclust(d)plclust(h)cutree(h, 3)plclust(clorder(h, cutree(h, 3))) # re-order tree into three groups
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Matrix Methods

The classical methods based on variance-covariance matrices.mahalanobis Mahalanobis distancescancor Canonical correlation analysisdiscr Discriminant analysispcrcomp Principal components analysisprincomp Principal components analysis (v 3.2)factanal Principal components analysis (v 3.2)

An example of discriminant analysis with Fisher’s iris data:iris.var <- rbind(iris[,,1], iris[,,2], iris[,,3])species <- rep(1:3,rep(50,3))iris.dis <- discr(iris.var, 3)iris.dv <- iris.var %*% iris.dis$vars # find discriminant variablesbrush(cbind(iris.dv, species))iris.x <- iris.dv[,1] ; iris.y <- iris.dv[,2]iris.lab <- c(rep("s", 50), rep("c", 50), rep("v", 50))plot(iris.x, iris.y, type="n", xlab="first discriminant variable",ylab="second discriminant variable")text(iris.x, iris.y, iris.lab, cex=0.7)
first discriminant variable
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Figure 7: Discriminant analysis
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A Libraries

Libraries are a mechanism to add ‘packages’ of extra objects (functions and datasets) to S. To
find out which libraries are available type> library()
which on one of my systems gave:The following sections are available in the library:SECTION BRIEF DESCRIPTIONchron Functions to handle dates and times.examples Functions and objects from The New S Language.external Handle external (large) objects.image Display images.maps Display of maps with projections.progdraw Sdraw example from Programmer's Manual.progexam Examples from Programmer's Manual.semantics Functions from chapter 11 of The New S Language.ripley B.D. Ripley's teaching functionsFor more information on each library section see the README file ineach library section directory or in S-PLUS run:library( help = <section_name> )Library sections from Venables & Ripley (1994)`Modern Applied Statistics with S-Plus'MASS main librarynnet neural networksspatial spatial statistics
To find out more about a section, use> library(help=name)
e.g.> library(help=robust)functions for robust statisticsIQR(y) inter-quartile rangehuber(y, k = 1.5) Huber location with MAD scalehubers(y, k = 1.5, mu, s) Huber proposal 2 [with mu known, s known]hreg(x, y, k = 1.5) Huber robust regressiondatasetschem copper in wholemeal flourabbey nickel in syenite rock



A.1 Library ripley 46milk lead in milk powderphones Belgian 'phone calls 1950-1973
To use the library, invoke it by> library(name)
which attaches it as a data directory at the end of the search list. Thus libraries cannot over-ride
standard functions nor your own functions. To make a library over-ride the system functions,
use> library(name, first=T)
which attaches it at position 2 (after the .Data directory).

A.1 Library ripley
This is a collection of useful functions and datasets for teaching at Oxford.BoxCox(x,y) Box-Cox plot for transformations.gl(from,to,size,x) replacement for GLIM %GL.eqscplot equally-scaled plot function.stdres(object) calculate standardized residuals from a fit.studres(object) calculate Studentized residuals from a fit.

Datasets in the library are:accdeaths US accidental deaths 1973-8cement dataset on heat evolved in setting cementscpus dataset on performance of cpusdeaths time series on UK lung deaths 1974-9 from Digglemdeaths, fdeaths as above, for males and femalesgehan remission times on leukaemia patients (censored)forbes Forbes’ dataset on boiling points, from Atkinsonhills dataset on times of Scottish hill racesleuk (uncensored) survival times on leukaemia patientslh time series on luteinizing hormone from Digglemammals body weight(kg) and brain weight (g) of mammals, from Weisbergmcycle motorcycle impact data – Silverman JRSS B 1985motorette accelerated life testing on motorettesnottem time-series of temperatures in Nottingham, 1920-1939road dataset on road deaths in the USrock dataset on relating permeability to physical measurementsrubber dataset on rubber wearships ship damage incidents, from McCullagh & Neldertrees Black Cherry trees heights, diameters and volumes

A.2 Sources of Libraries

Many S users have generously collected together their functions and datasets together into li-
braries and made them publically available. An archive of libraries is maintained at Carnegie-
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Mellon as a service to the statistical profession by Mike Meyer. To obtain details of its contents
by e-mail send a message tostatlib@lib.stat.cmu.edu
with body send indexsend index from S
Ftp to lib.stat.cmu.eduwith user statlib is also available.


