Introductory Guide

{o
S-Plus

Final Version

B.D. Ripley
Professor of Applied Statistics,
University of Oxford

e-mail: ripley@stats.ox.ac.uk

24 August 1994



Preface

This guide was originally written for graduate students in Statistics at the University of Ox-
ford. The first versions were based closely on notes by Dr. Bill Venables of the Department
of Statistics at the University of Adelaide, but have been updated to reflect later versions of S,
the extensions of S-Plus and local facilities. Several sections, in particular 4, 6 and 11, remain
close to Dr. Venables' original material. This guide will no longer be updated, following the
publication of Venables & Ripley (1994). [See p. 1. Where that takes a significantly better
approach than earlier editions of these notes, the material formerly here has been dropped.]

The guideisto S-Plus, but much of it will be relevant to users of the underlying S. Extensions
which are only in S-Plus include dynamic graphics (6.3, brush and spin) and the classical
statistics functions (§9). Theterminology of thisguideisintended to be precise, only referring
to S-Plus rather than S for features unique to S-Plus.

These noteswerewrittenfor aparticular environment, S-Plus 3.2 on Sun SparcStationsrunning
the Open Windows windowing system. You will find a number of differences depending on
your local environment. It will help to havethelibrary ripley available — it should be in the
same source as these notes. It can be also be obtained by anonymous ftp from

markov.stats.ox.ac.uk (163.1.20.1)
infilepub/S/ripley.sh.Z. Itisavailablefrom statlib (see Section A.2) as
send ripley from S
Alternatively, library (MASS) from Venables & Ripley (1994) can be used.

Thisguide may befreely copied and redistributed for any educational purpose (including com-
mercia courses) provided its authorship (B.D. Ripley and W.N. Venables) is clearly stated.
Where appropriate, asmall chargeto cover the costs of production and distribution, only, may
be made.

B.D. Ripley,
University of Oxford,
24th August, 1994.



Contents ii
Contents
Introduction 1
11 Statingand Finishing . . . . . . .. ... L 1
12 GettingHelp . . . . . . . 2
1.3 Hardcopy Output . . . . . . . . . . . 3
Datasets 3
A First Session 5
Simple Data Manipulation 6
41 VeClOors . . . . . . . e 6
4.2 Vector Arithmetic . . . . . . . . ... 6
4.3 Generating Regular Sequencesof Numbers. . . . . . . . . .. .. .. .. .. 7
44 Logica Vectors. MissngValues . . . . . .. ... oL oo 8
45 Character VeCtors . . . . . . . . .. 8
4.6 Index Vectors. Selecting and Modifying Subsetsof aDataSet . . . . . . . . 9
A7 Arrays . ... e 10
48 Lists . . . . . 11
49 DaaFrames . . . . . . . e 12
Readingdatainto S 14
51 Writingoutdata . . . . . . . .. . L 15
Graphics 16
6.1 Graphica Parameters . . . . . . . . ... 16
6.2 SomeBascPlotting Functions. . . . . . .. .. ... oL 17
6.3 InteractionwithPlots . . . . .. .. .. .. ... ... ... ... ... 17
6.4 BrushandSpin. . . .. .. ... .. ... 18
6.5 Equaly-scaledplots . . . . ... .. .. 18



Contents iii
7 Statistical Summaries 20
7.1 Arithmetical Summaries . . . . . . . .. ... 20
7.2 Histogramsand Stem-and-Leaf Plots . . . . . . . .. ... ... L. 20
7.3 BOXplOtS . . . . .. 21
8 Distributions 22
81 Q-QPlots . . . . . . 23
9 Classical Statistics 24
10 Handling Categorical Data 27
10.1 TheFunction tapply(...) and Ragged Arrays . . . . . . . . .. .. . ... 28
11 Loopsand Conditional Execution 29
12 Writing Your Own Functions 30
13 Statistical Models 32
131 Model Formulas . . . . . . . .. 32
13.2 One-way Layouts . . . . . . . . . .. 33
13.3 Designed Experiments . . . . . . . . ... 35
134 GeneralizedLinear Models . . . . . . . .. ... L 39
13.5 Updating and SelectingModels . . . . . . . .. ... 42
14 Multivariate Analysis 43
Appendix
A Libraries 45
A.l Library ripley . . . . . . oo e 46
A.2 Sourcesof Libraries . . . . . .. ... 46



Introduction 1

1 Introduction

S isadatistical language developed at AT& T's Bell Laboratories. S-Plus is a binary distri-
bution of S, with added functions, produced by the StatSci Division of MathSoft in Seattle.
The S system was radically re-designed in the 1988 release and known as‘New S . In August
1991 a new release of what is once again caled S consisted of a moderate revision of ‘ New
S together with far-ranging extensions. S-Plus 3.0 wasintroduced in late 1991, based on that
release of S, with numerous additional features. S-Plus 3.1 was released at the very end of
1992, and S-Plus 3.2 in very early 1994.

The main references are:

R.A. Becker, JM. Chambers and A.R. Wilks (1988) The NEW S language. Wadsworth &
Brooks/Cole.

JM. Chambersand T.J. Hastie (1992) Satistical Modelsin S. Wadsworth & Brooks/Cole.

It is not the intention of this guide to replace the books. Rather these notes are intended as
abrief introduction to the capabilities of the S programming language and to how to perform
some common statistical procedureswithinS. Usersof S-Plus will need to consult both books,
probably frequently. Both books contain some reference documentation, but the on-line ver-
sions (see §1.2) arelater and definitive.

There also manuals for S-Plus itself, whose organization differsfrom release to release.
Other booksinclude

W.N. Venables and B.D. Ripley (1994) Modern Applied Satistics with S-Plus. New York:
Springer ISBN 0-387-94350-1

which goes far beyond the coverage of thisguide, including many topics (such as robust statis-
tics, non-linear regressions, modern regression, survival anaysis, tree-based models, time se-
riesand spatial statistics) not covered here, aswell asin greater depth on what is covered.

1.1 Starting and Finishing

To start S-Plus, type the command

machine), Splus

After ashort while (and, the first time, an initialization message) you get the S-Plus prompt’:
>

Thisiswaiting for input from you.

Technically S isafunctionlanguagewith avery simplesyntax. Likemost Unix based packages
it iscase senditive, so A and a are different variables. Elementary commands consist of either
expressions or assignments. If an expression is given as a command, it is evaluated, printed,
and the value is discarded?. An assignment also evaluates an expression and passes the value

lwhich can be changed, but the default is assumed here
ZInfactitiskept in the (hidden) variable . Last . value and so can be retrieved from the ‘bin'.



1.2 GettingHelp 2

to avariable but the result is not printed automatically. An expression can beassmpleas2 +
3 or acomplex function call. Assignments are indicated by the assignment operator <- or _.
(Asthe first needs two keystrokes, lazy typists use the second. However, the first is easier to
read.) For example,

> 243

[1] 5

> mean(hstart)

[1] 137.9944

> m <- mean(hstart); v <- var(hstart)
> m/sqrt(v)

[1] 3.174021

The [1] states that the answer is starting at the first element of a vector.

Commands are separated either by a semi-colon, ;, or by anewline. If acommand isnot com-
plete at the end of aline, S will give a different prompt, namely

+

on second and subsequent lines and continue to read input until the command is syntactically
complete.

S can be extended by writing new functions, which then can be used exactly as built-in func-
tions (and can even replace them). How to write your own functionsis covered in section 12.

1.2 Getting Help

S has an inbuilt help facility smilar to the man facility of Unix. To get more information on
any specific named function or dataset, for example mean, the command is

> help(mean)

For a feature specified by special characters, and in a few other cases (oneis "swiss"), the
argument must be enclosed in double quotes, making it a“ character string’:

> help("[[")

Help usesawindow which overlaysyour mainwindow. The pager accepts anumber of options,
including space for the next page and q to quit. (Other useful options are 1G to go to the top
and control-b to go back apage.) If you prefer, a separate help window (which can be left
up) can be obtained by the argument window=T. Another way to get help is by

> ?mean

Short help isgiven by the function args.

S-Plus aso has awindow-based help facility, started by
> help.start(gui="openlook")

Click with the left mouse button on itemsto select categories and items. The help window can
be left up, or removed by



1.3 Hardcopy Output 3

> help.off()

Itisnot advisable to quit S-Plus windows from the frame menu.

1.3 Hardcopy Output

Graphics are printed by holding down the right button on the graph menu in a openlook()
window (see §6) and releasing over the print item. Thiswill print on the nearest laser printer
(or that selected by your PRINTER environment variable).

To record a session cut-and-paste to a textedit window, then remove your mistakes (if any)
and save asa Unix file.

2 Datasets

Datasetsare stored inadirectory ~/.Data. They are permanent, so al the objectsyou create
are retained until explicitly deleted. (Asthe directory name .Data beginswith . it will nor-
mally be hidden in file listings from Unix by 1s.) If thereisa .Data directory in the current
directory when S isinvoked, that directory is used rather than ~/.Data. This providesone
way to organize your S, using separate directories for each project.

In S, to get alist of names of the objects currently defined use the command
> objects()

Your own functions are also stored in .Data. To find out whether an object is a function or
dataset, and what isin it, just type its name at the prompt, e.g.

> stack.x
> plot

Thisprintsout thefunction, dataset, . . . . Inthelater versionsof S it may print ashort summary
of the object. To get the full details, use

> print.default (object)

When S looks for an object, it searches in turn through a sequence of directories known asthe
search list. Usualy the first entry in the search list is the .Data sub-directory of the current
working directory. The names of the directories currently on the search list can be found by
the function

> search()

The names of the objects held in any directory on the search list can be displayed by giving the
1s function an argument. For example objects (2) lists the contents of the second directory
in the search list. Normally the second, third and fourth directories are built-in functions, and
thefifth, sixth and seventh contain standard datasets

Extra search directories can be added to thislist with the attach(...) function and removed
with the detach(...) function, details of which can be found in the manuals or the help fa



Datasets 4

cility. Note that attached directories are searched after the .Data directory in the order last
attached to first attached.

To remove objects permanently the function rm is available:
> rm(x,y,z,1in, junk,temp)

The function remove(...) can be used to remove objects with non-standard names.

Warning

Objectsin your .Data directory will take precedence over system objects of the same name.
Thisisafrequent cause of rather obscureerrors, and can cause apparently correct behaviour but
erroneous results. Avoid using namessuchasc, s, t, glm, range, tree for your own
objects. If you get peculiar errors, clean up your .Data directory and try again!

S keepsarecord of commandsinthe . Audit filein the .Data directory. Thisisahidden file
and can grow rather large. Use (from the Unix command line)

Splus TRUNC_AUDIT O

occasionally to clean out the audit file entirely (or omit the 0 to keep the last 0.5Mb).



A First Session 5

3 A First Session

The sampl e session given below isintended to show by example some of the capabilities of the
system. Work through the session given by the commands on the |eft of the page. Some clues
asto what is going on are given at the right hand side of the page.

machine), Splus Start the session.

> openlook() Open the graphics window.

> library(ripley) Add alibrary of functionsand datasets.

> help(trees) use g to quit

> trees Print out a data frame of the trees data

> attach(trees) so that we can use names diam etc

> hist(diam) Histogram as counts.

> hist(diam, nclass=10, probability=T) as probability density

> help(hist)

> stem(diam) Stem-and-leaf plot.

> plot(diam, volume) Scatter plot.

> trees.lm <- Ilm(volume ~ diam) linear regression

> summary(trees.lm) summary of fit

> anova(trees.lm) analysis of variance table

> abline(trees.lm) plot line on scatter plot

> identify(diam, volume, height) Move mouse to plot and click with left button
to see what height is. Click middle button to
quit.

> par(mfrow=c(1,2)) set up 1 row, 2 colsfor plots

> plot(trees.lm) plotsof fitted valuesand | residual s| vsfitted value.

> par(mfrow=c(1,1)) one plot again.

> qqnorm(residuals(trees.lm)) normal probability plot of residuas

> qqnorm(studres(trees.lm)) and of Studentized residuals

> qqline(studres(trees.lm)) line through quartiles

> pairs(trees) all pair-wise scatter plots

> brush(cbind(diam, height, volume)) rotate pointsin 3D, select and de-select points.

Click on quit toend

trees.1m2 <- 1lm(volume ~ diam + height) multipleregression. Try functionsas before
trees.1lm3 <- Im(log(volume) ~ log(diam) + log(height))

detach("trees") to avoid any confusion

help(road)

attach(road)

plot(drivers, deaths)

plot(drivers, deaths, log="xy")

state <- row.names(road)

identify(drivers, deaths, state) Find the ‘odd’ states.

plot(fuel, deaths, log="xy")

identify(fuel, deaths, state)

road.mat <- cbind(drivers, fuel, deaths) Set upamatrix

pairs(road.mat) Look at pattern of al three

brush(road.mat, rowlab=state, spin=F) Use mouse to highlight points and check their
identity. Then click on quit

> q0 Finish session

vV V V V V V V V V V V V V.V



Smple Data Manipulation 6

4 Simple Data Manipulation

The basic data objectsin S are vectors, arrays, lists and data frames.

4.1 \ectors

S operates on named data structures. The ssmplest such structureisthe vector, whichisasin-
gle entity consisting of an ordered collection of numbers. To set up a vector named x, say,
consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the S command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

Thisisan assignment statement using thefunctionc (. . . ) taking an arbitrary number of vector
arguments and whose value is the vector of its arguments.

A number occurring by itself in an expression is taken as a vector of length one.

Assignments can also be made in the other direction, using the obvious change in the assign-
ment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is printed and lost. So now if we
were to use the command

> 1/x

the reciprocals of the five values would be printed (and, of course, the value of x would be
unchanged).

4.2 \ector Arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed
element-by-element. Vectors occurring in the same expression need not all be of the same
length. If they are not, the value of the expression isavector with the samelength asthelongest
vector which occursin the expression. Shorter vectors in the expression are recycled as often
as need be (perhapsfractionally) until they match the length of thelongest vector. In particular
aconstant is smply repeated. So with the above assignments the command

> v <- 2%x +y + 1

generatesanew vector v of length 11 constructed by adding together, element-by-element, 2*x
repeated 2.2 times, y repeated just once, and 1 repeated 11 times.

The elementary arithmetic operators are the usua +, -, *, / and ~ for raising to a power. In
addition all of the common arithmetic functions are available. log, 1og10, exp, sin, cos,
tan, sqrt, and so on, all have their usual meaning. max and min Select the largest and small-
est elements of an vector respectively. range is afunction whose value is a vector of length
two, namely c (min(x) ,max (x)). The element-by-element maximum and minimum of two or
more vectors are given by pmax and pmin. length (x) isthe number of el ementsin x, sum(x)
givesthetota of the elementsin x and prod (x) their product.



4.3 Generating Regular Sequences of Numbers. 7

Two statistical functions are mean (x), which evaluates to sum(x) /length(x) and var(x),
which gives the value sum((x-mean(x)) "2)/(length(x)-1), the sample variance. If the
argumenttovar(...) isann x p matrix thevalueisap x p sample covariance matrix obtained
from regarding the rows as independent p-variate sample vectors.

sort (x) returnsavector of the same size as x with the elements arranged in increasing order.
Other, moreflexible, sorting facilitiesare available (see order (. ..) which produces a permu-
tation to do the sorting, and sort . list).

4.3 Generating Regular Sequences of Numbers.

S has a number of facilities for generating commonly used sequences of numbers. For ex-

ample 1:30 isthe vector c(1,2,...,29,30). The colon operator has highest priority within
an expression, so, for example 2+1: 15 isthe vector c(2,4,6,...,28,30). Putn <- 10 and

comparethesequences 1:n-1 and 1:(n-1).
The construction 30 : 1 may be used to generate a backwards sequence.

The function seq(...) isamore genera facility for generating sequences. It has five argu-
ments, only some of which may be specified in any onecall. Thefirst two arguments, if given,
specify the beginning and end of the sequence, and if these are the only two arguments given
theresult is the same as the colon operator. That is, seq(2,10) isthe same vector as2: 10.

Parametersto seq(...), and to many other S functions, can aso be given in named form, in
which case the order in which they appear isirrelevant. Thefirst two parametersmay be named
from=valueand to=value; thus seq(1,30), seq(from=1,t0=30) and seq(to=30,from=1)
are al the same as 1:30. The next two parametersto seq(...) may be named by=value and
length=value, which specify astep size and alength for the sequence respectively. If neither
of these isgiven, the default by=1 is assumed.

For example

> seq(-5, 5, by=.2) -> s3

generatesin s3 the vector c(-5.0,-4.8,-4.6,...,4.6,4.8,5.0). Similarly
> s4 <- seq(length=51, from=-5, by=.2)

generates the same vector in s4.

The fifth parameter may be named along=vector, which if used must be the only parameter,
and createsa sequence 1, 2, ..., length(vector), or the empty sequence if the vector is
empty (asit can be).

A related functionisrep(...) which can be used for replicating a structure in various com-
plicated ways. The smplest formis

> s5 <- rep(x, times=b)

which will put five copies of x end-to-endin s5.



4.4 Logical Vectors. Missing Values 8

4.4 Logical Vectors. Missing Values

Aswell as numerical vectors, S alows manipulation of logical quantities. The elements of a
logical vector have just two possible values, represented formally asF (for ‘false’) and T (for
‘true’). (TRUE and FALSE are also valid representations.)

Logical vectors are generated by conditions. For example
> temp <- x>13

setstemp asavector of thesamelength asx with valuesF corresponding to elementsof x where
the condition is not met and T whereit is.

Thelogical operatorsare<, <=, >, >=, == for exact equality and ! = for inequality. In addition if
clandc2 arelogical expressions, thenc1 & c1 isther intersection (and), c1 | c2 isther union
(or) and ! c1 isthe negation of c1.

Logical vectorsmay beused in ordinary arithmetic, in which casethey are coerced into numeric
vectors, F becoming 0 and T becoming 1. However there are situations where logical vectors
and their coerced numeric counterparts are not equivalent.

In some cases the components of a vector may not be completely known. When an element
or valueis“not available” or a“missing value” in the statistical sense, a place within a vector
may be reserved for it by assigning it the special value NA. In general any operation on an NA
becomes an NA. The motivation for thisrule is ssimply that if the specification of an operation
isincomplete, the result cannot be known and hence is not available.

The function is.na(x) givesalogical vector of the same size asx with value T if and only if
the corresponding element in x iSNA.

> ind <- is.na(z)

45 Character Vectors

Character quantities and character strings are used frequently in S, for example as plot l|abels.
They are denoted by a sequence of characters delimited by the double quote character. E.g.
"x-values","New iteration results". Singlequotescan aso beused, inmatching pairs.

Character strings may be collected into avector by the c (.. .) function; examples of their use
will emerge frequently.

Thepaste(...) functiontakesan arbitrary number of character string argumentsand concate-
natesthem into asingle character string. Any numbers given among the arguments are coerced
into character strings in the same way they would be if they were printed. The arguments are
by default separated in the result by a single blank character, but this can be changed by the
named parameter, sep=string, which changesit to string, possibly empty.

For example
> labs <- paste(c("X","Y"), 1:10’ sep="")

makes 1abs the character vector ("X1", "y2",6 "X3", ..., "X9", "Y10"). Notein par-
ticular that recycling of short vectors takes place here too; thus c (X", "Y") isrepeated 5



4.6 Index Vectors. Sdlecting and Maodifying Subsets of a Data Set 9

times to match the sequence.

The elements of a vector can be named (aswell as numbered) by assigning a character vector
to itSnames attribute, e.g.

> costs <- c(26, 45, 67, 33, 51)
> names(costs) <- c("banana", "apple", "orange", "fig", "kiwi")
> costs
banana apple orange fig kiwi
26 45 67 33 51

4.6 Index Vectors. Selecting and Modifying Subsets of a Data Set

Elements of avector may be extracted by specifying the element in square brackets, e.g. x[5].
More generaly, subsets of a vector (or any expression that evaluates to a vector) may be se-
lected by appending to the name of the vector an index vector in square brackets. Such index
vectors can be any of four distinct types:

1. A logical vector. Inthiscasetheindex vector must be of the same length asthe vector from
which elements are to be selected. Vaues corresponding to T in the index vector are
selected and those corresponding to F omitted. For example

>y <= x[!is.na(x)]

creates (or re-creates) an object y which will contain the non-missing values of x, in the
same order. Note that if x has missing values, y will be shorter than x. Also

> (x+1)[('is.na(x)) & x>0] -> =z

createsan object z and placesin it the values of the vector x+1 for which the correspond-
ing value in x was both non-missing and positive.

2. A vector of pogtiveintegral quantities. In this case the values in the index vector must
lieinthetheset {1, 2, ..., length(x)} . Thecorrespondingelements of the vector
are selected and concatenated, in that order, intheresult. The index vector can be of any
length and the result is of the same length as the index vector. For example x[6] isthe
sixth component of x and

> x[1:10]
selects the first 10 elements of x (assuming length(x) > 10). Also
> c(Mx","y") [rep(c(1,2,2,1) ,times=4)]

(an admittedly unlikely thing to do) produces a character vector of length 16 consisting
Of g , ||y|| , ||y|| , g r@eated four t|m$

3. A vector of negativeintegral quantities. Inthis case the index vector specifies the values
to be excluded rather than included. Thus

>y <= x[-(1:5)]

givesy al but thefirst five elements of x.



4.7 Arrays 10

4. A vector of character strings. This possibility only applies where an object has a names
attribute to identify its components. In this case a subvector of the names vector may be
used in the same way as the positive integral labelsin 2.

> lunch <- fruit[c("apple","orange")]

Thisoption is particularly useful in connection with data frames (see §4.9).

An indexed expression can also appear on the receiving end of an assignment, in which case
the assignment operation is performed only on those elements of the vector. The expression
must be of the form vector [index_vector] as having an arbitrary expression in place of the
vector name would not make sense.

The vector assigned must match thelength of theindex vector, and in the case of alogical index
vector it must again be the same length as the vector it isindexing.

For example

> x[is.na(x)] <- 0

replaces any missing valuesin x by zeros and
> yly<0] <- -yly<o0]

has the same effect as

>y <- abs(y)

4.7 Arrays

Anarray can be considered asamultiply subscripted collection of dataentriesof the sametype,
for example numeric, logical or character string.

An array is defined by having a dimension vector, avector of positive integers. If itslengthis
k thenthe array isk—dimensional. The valuesin the dimension vector give the upper limitsfor
each of thek subscripts. The lower limitsare always 1. Suppose, for example, z isavector of
1500 elements. The assignment

> dim(z) <- <¢(3,5,100)
allowsz to betreasted asa3 x 5 x 100 array.

Other functionssuch asmatrix(...) and array(...) areavailablefor smpler and more nat-
ural looking assignments in special cases, e.g.

> z <- array(z, <(3,5,100))
> z <- matrix(z, 3, 5))

Thevauesinthedatavector givethevauesin thearray inthe same order asthey would occur in
Fortran, that is, with thefirst subscript moving fastest and the last subscript sowest. For exam-
pleif thedimension vector for anarray, say a, isc(3,4,2) thenthereare3 x 4 x 2 = 24 entries
in a and the data vector holds them in the order a[1,1,1], a[2,1,1], ..., al2,4,2],
al3,4,2]. To makelife easier, matrix has abyrow=T parameter for data presented by row
rather than by column.



4.8 Lists 11

Individual elements of an array may be referenced by giving the name of the array followed
by the subscriptsin square brackets, separated by commas. More generally, subsections of an
array may be specified by giving a sequence of index vectorsin place of subscripts, however if
any index position is given an empty index vector, then the full range of that subscript istaken.
Thusal2,,]isa4 x 2 array with dimension vector c(4,2) and data vector

al2,1,1],al2,2,1],al2,3,1],al2,4,1],al[2,1,2],al[2,2,2],a[2,3,2],a[2,4,2],

in that order. a[,,] stands for the entire array, which is the same as omitting the subscripts
entirely and using a aone.

Arraysmay be used in arithmetic expressions and the result is an array formed by element-by-
element operations on the data vector. The dimension vectors of operands generally need to be
the same, and this becomes the dimension vector of theresult. Soif A, B and C are al similar
arrays, then

>D <- 2%AxB + C + 1

makes D asimilar array with data vector the result of the evident element-by-element opera-
tions. The matrix multiplication operator is %*7, .

There are extensive matrix manipulation facilities, including transposes and eigenvalue,
Cholesky, QR and singular-value decompositions. Seehelp on t, eigen, chol, qr and svd.

Any dimension of an array can be given a set of names using dimnames, but is usually easier
to use the facilities of dataframes.

Matrices can be built up from given vectors and matrices by the functions cbind(...) and
rbind(...). Informally, cbind(...) forms matrices by binding together vectors or matrices
horizontally, or column-wise, and rbind(...) verticaly, or row-wise.

4.8 Lists

An S list isan object consisting of an ordered collection of objects known as its components.
Thereisno particular need for the componentsto be of the same mode or type, and, for example,
alist could consist of anumeric vector, alogical value, amatrix, a character array, a function,
and so on.

Components are always numbered and may aways be referred to as such. If trees isalist,
then thefunction length (trees) givesthe number of (top level) componentsit has, specified
aStrees[[1]],trees[[2]] and so on.

Components of lists may also be named, and in this case the component may be referred to
either by giving the component name as a character string in place of the number in double
sguare brackets, or, more conveniently, by giving an expression of the form

> name$component_name

for the same thing. Thisisavery useful convention as it makesit easier to get the right com-
ponent if you forget the number, and is strongly advised. You can find out the names of the
components by

> names (names)



4.9 DataFrames 12

and this generates much less output that printing the object, which will achieve the same pur-
pose.

The names of components may be abbreviated down to the minimum number of |etters needed
to identify them uniquely. Most of the datasetsarein fact lists (or can betreated aslists), sowe
could refer to the component diam of the trees dataastrees$d. Similarly, many S functions
return lists of results.

It isimportant to distinguish trees[[1]] from trees[1]. “[[...]1]" isthe operator used to
select asingle element of alist, whereas*” [...]" isagenera subscripting operator for vectors.
Fortunately, numbered components are needed very rarely.

New lists may be formed from existing objects by thefunction 1ist (...). An assignment of
theform

> trees <- list(diam=tree.d, height=tree.h, volume=tree.v)

setsup alist tree of 3 componentsusing the existing objects tree.d, tree.handtree.v
for the components and giving them names as specified by the argument names (which can be
chosen fredly). If these names are omitted, the components are numbered only.

Listscan be attach-ed aswell asdirectories, and thisallows their componentsto be accessed
asif they were stand-alone entities. Thusin the trees example we could have

> attach(trees)
> mean(height)

Itiswiseto detach("trees") after useto avoid any nasty surprises.

4.9 Data Frames

Dataframeswereintroduced inthe August 1991 release of S, and can be thought of asclosely-
coupled lists of data vectors of the same length. Unlike matrices, the data vectors can be of
different types, including character data. Both the rowsand columns can belabelled. Consider
thedataframeroad from library (ripley):

> road
deaths drivers popden rural temp fuel
Alabama 968 158 64.0 66.0 62 119.0
Alaska 43 11 0.4 5.9 30 6.2
Mo 1289 234 63.0 100.0 40 180.0
Mont 259 38 4.6 72.0 29 31.0

which has both row and column labels. The columns can be treated as components of alist:

> road$rural

[1] 6.0 5.9 33.0 73.0 118.0 73.0 5.1 3.4 0.0 57.0 83.0 40.0
[13] 102.0 89.0 100.0 124.0 65.0 40.0 19.0 29.0 17.0 95.0 110.0 59.0
[25] 100.0 72.0

and the structure can be treated as a two-dimensional array:



4.9 DataFrames 13

> road[2,4]
Alaska
5.9
> road["Mo", "temp"]
Mo
40
> road["Mo",]
deaths drivers popden rural temp fuel
Mo 1289 234 63 100 40 180

Note how the row label is carried along.

Dataframescan be attach-edjust aslists can, and thisallowstheir columnsto be accessed as
if they were named vectors.

A data frame can be created from vectors and matrices by the data . frame function. For ex-
ample:

> treeframe <- data.frame(diam=tree.d, height=tree.h, volume=tree.v)
If the columns are not named, they pick up the names of the vectors, so

> treeframe <- data.frame(tree.d,tree.h,tree.v)

gives
tree.d tree.h tree.v
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8

Character vectors given to data.frame are automatically treated as factors (see §10), unless
specified withina I () function.



Reading datainto S 14

5 Reading datainto S

Data objects will usually be read as values from external files. Thisisdone most conveniently
withthe scan(...) function. To read a vector from the keyboard we can use

> counts <- ¢(2,3,3,4,3,2,1,3,8,11,6,6,7,12,11,11,
+ 117,121,47,22,85,98,43,20,119,209,68,43,67,99,46,33)
or

counts <- scan()
2334321381166 7 12 11 11
117 121 47 22 85 98 43 20 119 209 68 43 67 99 46 33

Input isterminated by ablank input line (from the terminal only, despite the documentation) or
by EOF (ctrl-D in Unix). To read in acharacter vector we specify the vector type by the second
argument:

> diet <- scan(,"")

DEACBFCDTFBAE
FACEDBBCEAFD
EFBDCAABDTEFETC

To read from afile specify its name as the first argument, for example
> counts <- scan(''chd.dat")

Now suppose that multipledatavectorsof equal lengtharetobereadinin parallel. For example
suppose that there are three vectors, thefirst of mode character and the remaining two of mode
numeric, and the file is input .dat. Use scan(...) to read in the three vectors as alist, as
follows

> in <- scan("input.dat",list(id="", x=0, y=0))

The second argument isadummy list structure that establishes the mode of the three vectorsto
beread. The result, held in in, isalist whose (named) components are the three vectors read

n.
Matrices are usually read by row, as follows
> X <- matrix(scan("light.dat"), ncol=5, byrow=T)

The argument skip=to scan can be used to skip header rows of files.

Data frames can be read from afile by the read . table function. The data file should be a
tablein one of a number of formats:

1. Afilesuch asrotifer.dat (page 39) which has afirst row naming the columns, fol-
lowed by the table of numeric data can be read by

> rotifer <- read.table("rotifer.dat", header=T)



5.1 Writing out data 15

2. Afilelaid out likethelisting of adataframe. Thishasafirst header line, and rowswhich
contain the row label followed by the data for the columns, such as

deaths drivers popden rural temp fuel
Alabama 968 158 64 66 62 119
Alaska 43 11 0.4 5.9 30 6.2

Note that the header has one less entry than subsequent rows. Thisformat is read by
> road <- read.table("road.dat")
3. A table without any header. The row and column labelsarethen 1, ..., m and V1,

...Vn. However, if there exists a character column without duplicates, the first such is
taken as the row labels and removed as a column.

Sometimesit is necessary to read in character strings which contain spaces. This can be done
by separating the fields in the file by, for example, tabs or commas:

> usroad <- scan("road.dat", sep="\t", list(state="", deaths=0,
+ drivers=0, popden=0, rural=0, jantemp=0, fuel=0))

where\t istheusual Unix abbreviationfor atab character. Thisdevicea so appliestoread.table.

5.1 Writing out data

There are amny ways to write out datafrom S, for examplethe print, cat and format com-
mands. To write directly to afile, there are cat, write and, from S-Plus 3.2, write.table
whichisusually the smplest method. This canwriteadataframe, matrix or vector, with syntax

> write.table(data, file="", sep=",")

and further arguments can be found in the help page. By default it writes out comma-separated
items on rows, but the separator can be changed to space or tab ("\t" in Unix).

The function write writesavector, with syntax

> write(data, file="data", ncolumns=5)

for numeric data, and in one column for character data. To write out a matrix m, use
> write(t(m), file="data", ncolumns=ncol(m))

The function format converts datato aline of characters, and can be used with write or cat
to construct custom reports.



Graphics 16

6 Graphics

The graphical facilitiesare central to S. The stepsinvolved are asfollows:

1. Thetype of terminal, or device, isdeclared to S at the beginning of the session:

> openlook()

2. A command isissued to construct a plot from data. For example
> plot(x,y)

specifies a simple point plot where x and y are vectors giving the x- and y-coordinates
of the points respectively. (The command includes a default automatic choice of axes,
scales, titlesand plotting characters, al of which can be overriddenwith additional graph-
ical parameters that could be included as named arguments in the command.)

6.1 Graphical Parameters

Functions producing graphical output usually have optional additional named arguments that
can be specified to override some default parameter settings and hence modify the character-
isticsof aplot. A short list of the main onesis asfollows:

axes=L If FALSE all axesare suppressed. Default TRUE, axes are automati cally constructed.

type="c" Type of plot desired. Vauesfor c are:
p for pointsonly, (the default for function plot),
1 for linesonly,
b for both pointsand lines, (the lines miss the points),
s, S for step functions (s specifies to change now, S to change just before the
next point),
o for overlaid pointsand lines,
h for high density vertical line plotting, and
n for no plotting (but axes are still found and set).

xlab="string" Give labelsfor the x— and/or y—axes (default: the names, including suffices, of
ylab="string"  thex andy coordinate vectors).
sub="string" sub specifiesatitleto appear under the x—axislabel and main atitlefor thetop

main="string" of theplot in larger letters. (default: both empty).

xlim=c(lo ,hi)  Approximateminimum and maximum valuesfor x—and/or y—axessettings. These
ylim=c(lo, hi) valuesare automatically rounded to make them “pretty” for axislabelling.

Other graphical parameters control the background characteristics of all subsequent plots and
are usually specified by a call to the function par(...). There are a great number of these
parameters and the command

> help(par)

gives acomplete list of them and their meanings. Some of the more commonly adjusted ones
areasfollows:



6.2 Some Basic Plotting Functions 17

lty=n

pCh=”C”

mfrow=c(m,n)
mfcol=c(m,n)

pty=”C”

Linetypeisn. If linesare being plotted, avariety of linetypesisavailable, n =
1 meansasolidlinen = 2, 3, ... indicatesavariety of broken lineforms.

Specify the character to be used for plotting points (default: * for graphics ter-
minals, e for PostScript).

multiple frames on the one plot. Instead of plotting just one graph per screen,
each screen (or page) will contain an array of mxn graphsformingan m x n grid.
If mfrow is used the screen isfilled row-by-row and if mfcol isuseditisfilled
column-by-column. Useful if many graphs are to be inspected simultaneously
and high resolution is not necessary.

Specify the type of plotting region currently in effect. Possiblevaluesfor c are
s to generate a square plotting region;
m (the default) to generate amaximal size plotting region.

6.2 Some Basic Plotting Functions

The elementary plotting functions are as follows:

plot(x,y,...)

points(x,y,...)

lines(x,y,...)

text(x,y,
labels,...)

abline(a,b,...)
abline(h=c,...)
abline(v=c,...)

abline(Imobject,.

Scatter plot of points with x— and y—coordinates given by the two
main parameters. The pair x,y may be replaced by asingle list with
components labeled x and y, called a“plot list’.

Graphical parametersare particularly useful.

Add pointsto an existing plot (possibly using adifferent plotting char-
acter. Followson fromaplot(...) command.

Add lines to an existing plot. Similar to points.
Note
> plot(x,y); lines(spline(x,y))
will join the points of a plot by a cubic spline interpolation function.
(Seehelp(spline) for further information.)

Add text to aplot a pointsgiven by x,y. Normally labelsisanin-
teger or character vector inwhich caselabels[1i] isplotted at point
(x[1],y[i]). Thedefaultis1:1length(x).
Note: Thisfunction isoften used in the sequence

> plot(x,y,type="n"); text(x,y)
The graphics parameter type="n" suppresses the plotting of points
but set up theaxes, andthetext (. ..) function suppliesspecia char-
acters (inthis case just the integers by default) for the points.

Draw alineinintercept and slopeform, (a,b), acrossan existing plot.
h=c may be used to specify y—coordinatesfor the heights of horizon-
tal linesto go across aplot, and v=c similarly for the x—coordinates

..y forvertica lines.

6.3 Interaction with Plots

S-Plus alows usersto interact with plots, by identifying points and by adding information at
places selected by mouse clicks.



6.4 Brushand Spin 18

identify(x,y,labels) On acurrent plot of x,y, clicking the LEFT mouse button places
the appropriate string from label near the point which has been
clicked on. Click the MIDDLE mouse button to finish. If 1abel
is omitted uses index numbers, and always returns the indices of

selected points.
locator() Returns a list of vector coordinates of pointsclicked by the LEFT
mouse button. Click the MIDDL E mouse button to finish.
locator(,"p") ditto, but plotsthe pointsasinplot.
legend(locator(),...) Add alegend box at amouse-selected point (one LEFT click). See

help page for the box contents and other options.

locator () isoften used with text to add annotation to plots, e.g.

> text(locator(),"controls"); text(locator(),'"cases")

6.4 Brush and Spin

These are S-Plus enhancements to allow dynamic manipulation of graphs. Spin allowsthree
columns chosen from amatrix of data vectorsto be rotated in space.

> help("state")

> spin(state.x77)

Usetheleft mouse button to select three of the variables, then usethe cross-shaped pad to rotate
the point cloud. Finally click on quit.

> brush(state.x77, hist=T)

includes spin and apairs plot. Additionally one can ‘brush’ by selecting pointswith the left
mouse button, and de-selecting them with the middle button. One can mark pointsin different
ways, with the four symbols, and even label pointsif Label is selected.

> brush(rbind(irisl[,,1],iris[,,2],iris[,,3]))

Now select thefirst 50 pointswith one symbol and thelast fifty with another. The intermediate
nature of the middle 50 then stands oui.

6.5 Equally-scaled plots

It is sometime necessary to make geometrically-square plots, for example so that distances
can be assessed accurately. Thisis somewhat tricky, but done by the functions eqscplot in
library(ripley), which adjuststhe axisscalesto be equal within the current window shape.



6.5 Equally-scaled plots

19

S-PLUS

Petal W.

Bepal W.

Petal L.

Properties ¥

[ Tleft

circle | right

re!s et axds

SepalL.
Sepal W.
Petal L.

Peral W.

quit

| persistent |

Transient

up more
Cage 92
Case 93
Case®d
Case 95
Case 96
Case 97
Case 98
Case 9
Case 100
Zase 10

~.a5e 1U

| no label |

label

brogh bize

AT

Alase
ESEET
Aase
Case
[Tase

fae
(= (= Y | e e o

I

P

ALBEE
ESEETNP
Cage 121
down more

Bepal L.

Sepal W

Petal L.

[-|mid -

i

|

Figure 1. Screen dump of an openlook () window displaying brush on the iris data, with
different highlightsfor the three groups.



Statistical Summaries 20

7 Statistical Summaries

7.1 Arithmetical Summaries

Standard summariessuch asmean, median and var areavailable. Thevar function will takea
datamatrix and give the variance-covariance matrix, and cor computes the correl ation matrix,
ether from two vectors or a data matrix.

Therearea so standard functionsmax, min, range and quantile. Thefunctionsmean and cor
will compute trimmed summaries. More sophisticated robust summariesare available, such as
location.mand scale.tauaswell asviatherobust library.

7.2 Histograms and Stem-and-Leaf Plots

Thestandard histogramfunctionishist (x, ...) whichplotsaconventional histogram. More
control isavailableviatheextraparameters. The parameter probability=Tgivesaplot of unit
arearather than cell counts, and nclass sets the number of bins.

Densities can be estimated via the function density:

hist(hstart, nclass=20, probability=T, ylim=c(0,0.02))
lines(density(hstart))
lines(density(hstart, width=20), lty = 3)

Seefigure 2.

0.020

0.015

0.010

0.005

0.0

50 100 150 200

hstart

Figure2: A histogram of hstart with two density estimates overlaid.



7.3 Boxplots 21

A stem-and-leaf plot isan enhanced histogram:

> stem(hstart)

N = 108 Median = 133.85
Quartiles = 105.2, 158.8

Decimal point is 1 place to the right of the colon

: b

: 2239

: 55799

: 233567

: 1235779

10 : 00456

11 : 04568

12 : 023466667777899
13 : 0112344456799
14 : 1222333447999

© 00 N O O

15 : 0013458

16 : 0159

17 : 66

18 : 27

19 : 77

20 : 01333445667
21 : 38

22 : 68

23 . 14

Apart from giving avisual picture of the data, this gives moredetail. The actual data, in sorted
order,isroughly 55, 62, 62, 63, 69, ... andthiscanberead off theplot. Sometimesthe
pattern of numbers (all odd?) gives clues. Quantiles can be computed (roughly) from the plot.

7.3 Boxplots

A boxplot isaway to look at the overall shape of aset of data. The central box shows the data
between the quartiles, with the median represented by aline. *Whiskers go out to the extremes
of the data, and very extreme points are shown by themselves. Itisalso possibleto plot boxplot
for groups side-by-side:

> library(ripley)
> boxplot(split(nottem, cycle(nottem)), names=month.abb)

divides atime-series into months, and plots the boxplots for each month on one plot. Seefig-
ure 3. Other styles of boxplot are available—see the help page.



Distributions 22

60
=

40 50
|
o |
|
| O
-]
| -El]
[ -
= =1
=
[
R | BN

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3: Boxplotsfor months of nottem data
8 Distributions

S hasfunctionsbuilt it to (approximate) the density, cumulative distribution function and quan-
tile function (the inverse of the CDF) for many standard distributions. There are also function
to simulate samplesfrom these distributions. Thefirst letter of the name indicatesthe function,
e.g. dnorm, pnorm, qunorm, rnorm respectively.

Distributions available are:

Distribution S name parameters

beta beta shapel, shape?2
binomial binom size, prob
Cauchy cauchy location, scale
chisquare chisq df

exponential exp rate

F f df1,df2

gamma gamma shape

geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis loc, scale
negative binomial nbinom size, prob
normal norm mean, sd

normal range nrange size, sd
Poisson pois lambda

stable stab index, skewness
T t df

uniform unif min, max
Weibull weibull shape, scale

Wilcoxon wilcox m, n



8.1 Q-QPlots 23

The function sample re-samples from a data vector, with or without replacement.

8.1 Q-Q Plots

One of the best ways to compare the distribution of a sample x with adistributionisto use a
Q-Q plot, of which the normal probability plot is the best-known example. Q-Q plots can also
be used to compare two samples. For a sample x the quantile function is the inverse of the
empirical CDF, that is

quantile(p) = min(z | proportion p of thedata < z)

Thefunctionqgplot(x, y, ...) plotsthe quantilefunctionsof two samplesx and y against
each other, and so comparestwo samples. Thefunctiongqnorm(x) replacesone of the samples
by a sample at the quantiles of a standard normal distribution. This idea can be applied quite
generaly. For example, to test a sample against a ¢, distribution, we use

plot( gt(ppoints(x),9), sort(x) )
where ppoints computes the appropriate set of probabilitiesfor the plot.

The function qqline helps assess how straight a qqnorm plot is by plotting a straight line
through the upper and lower quartiles. (See the examplein §3.)



Classical Satistics 24

9 Classical Statistics

S-Plus 3.1 has a section on classical statistics. The same functions are used to perform tests
and to calculate confidence intervals.

The table shows the amount of wear in ashoe experiment with 10 boys, an experiment reported
inBox, Hunter & Hunter (1977), Satisticsfor Experimenters. Thereweretwo materials(A and
B) that were randomly assigned to the left or right shoe.

boy A B

1 13.2 (L) 14.0 (R)
2 8.2 (L) 8.8 (R)
3 10.9 (R) 11.2 (L)
4 14.3 (L) 14.2 (R)
5 10.7 (R) 11.8 (L)
6 6.6 (L) 6.4 (R)
7 9.5 (L) 9.8 (R)
8 10.8 (L) 11.3 (R)
9 8.8 (R) 9.3 (L)
10 13.3 (L) 13.6 (R)

We can use these data to illustrate one-sample and paired and unpaired two-sampletests. The
rather voluminous output has been edited:

> shoes <- scan(,list(A=0, B=0))
1: 13.2 14.0

3: 8.2 8.8
5: 11.2 10.9
7: 14.3 14.
9: 10.7 11.8

11: 6.6 6.4

13: 9.5 9.8

15: 10.8 11.3

17: 9.3 8.8

19: 13.3 13.6

21:

> attach(shoes)

> t.test(4, mu=10)

N

One-sample t-Test

data: A
t = 0.8127, df = 9, p-value = 0.4373
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:
8.876427 12.383573
sample estimates:
mean of x



Classical Satistics 25

10.63

> t.test(A)$conf.int
[1] 8.876427 12.383573
attr(, "conf.level"):
[1] 0.95

> wilcox.test (4, mu=10)

Exact Wilcoxon signed-rank test

data: A
signed-rank statistic V = 34, n = 10, p-value = 0.5566
alternative hypothesis: true mu is not equal to 10

> t.test(4, B)
Standard Two-Sample t-Test

data: A and B
t = -0.3689, df = 18, p-value = 0.7165

alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

-2.744924 1.924924

sample estimates:

mean of x mean of y

10.63 11.04

t.test(A, B, var.equal=F)
>
Welch Modified Two-Sample t-Test

data: A and B
t = -0.3689, df = 17.987, p-value = 0.7165

alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

-2.745046 1.925046

sample estimates:

mean of x mean of y

10.63 11.04

> t.test(A, B, paired=T)
Paired t-Test

data: A and B
t = -3.3489, df = 9, p-value = 0.0085
alternative hypothesis: true mean of differences is not equal to O
95 percent confidence interval:
-0.6869539 -0.1330461



Classical Satistics 26

> wilcox.test(4, B, paired=T)
Wilcoxon signed-rank test

data: A and B
signed-rank normal statistic with correction Z = -2.4495, p-value = 0.0143

The sample size is rather small, and one might wonder about the validity of the ¢-distribution.
An aternativefor arandomized experiment such asthisisto baseinference on the permutation
distribution of d. Figure 4 shows that the agreement is very good. (Asthe computation of this
figure uses some subtleideasin S, it is omitted: see Venables & Ripley (1994, Chapter 5).)

[| —— Permutation dsn

--- t9cdf ‘jf’*r

1.0

0.4

0.8

0.3

0.6

0.2

0.1
0.2

0.0
0.0

Figure4: Histogram and empirical CDF of the permutation distribution of thet-test in the shoes
example. The density and CDF of ¢, are shown overlaid.

Thelist of classical testsis:

binom.test chisq.test cor.test fisher.test
friedman.test  kruskal.test mantelhaen.test mcnemar.test
prop.test t.test var.test wilcox.test

Many of these have alternative methods — for cor.test there are methods "pearson",
"kendall" and "spearman".



Handling Categorical Data 27

10 Handling Categorical Data

Consider a(fictitious) survey of shoppersin Britain. Amongst the variables collected for each
person surveyed are sex, age, TV area®, social class!, transport used for this trip to the shops,
and total spend at supermarkets. The possible values of these variables are

Sex: M, F

age: —24, 2544, 45-59, 60+
TV area 1,...,12

social: A,B,C1,C2

transport: car, bus, cycle, foot
spend: positive continuous

This provides examples of each of S’stypes of categorical data structure. There aretwo main
structures, categories and factors. The latter were introduced in the August 1991 release, and
have almost entirely superseded the use of categories. A factor isregarded as avector over the
set of levelswhich havenoimplied order. Thussex, TV areaand transport areall factors. How-
ever, TV areaiscoded by number rather than by the names of the companies. These variables
can be declared as

sex <- factor(sex.data)
TV.area <- factor(TV.data)
transport <- factor(transport.data)

Internally in S levels are numbered in aphabetical order, and when factors are used as treat-
ments in designed experiments, the order of levels may matter. For example, if we want to
contrast females with males (rather than vice versa) we need to specify the levels of the factor
explicitly:

> sex <- factor(sex.data, levels=c("M","F'"))

Social classisan ordered factor in that the classes are perceived as ordered, with “A” (profes-
sionals) regarded as highest. We can declare an order by

social <- ordered(factor(social.data))
levels(social) <- levels(social)[4:1]
age <- ordered(factor(age.data),

levels=c("-24", "25-44" 6 "45-59" "60+"))

Thefirst line orders the levels by the default (alphabetical) order. The second shows how the
set of levels may be changed, in this case by reversing the existing ordering. Ageisan ordered
category for whichitisnecessary to specify thelevelsexplicitly. Had age . data been specified
asacontinuousvariable, it could have been categorized using cut (whose help page gives other
ways to produce the categories):

age.cdata <- cut(age.data, c(0, 25, 45, 60, 99))
age <- ordered(factor(age.cdata),
levels=c("-24", "25-44" 6 "45-59" "60+"))

3Britainis covered by 12 commercial TV companies, so this providesa simple geographical variable.
4Derived from occupation.



10.1 TheFunctiontapply(...) and Ragged Arrays 28

Some of the functionsfor statistical models treat ordered factors in appropriate specia ways.

10.1 The Function tapply(...) and Ragged Arrays

To continue the previous example, suppose we have want to summarize spend by some of the
factors To calculate the sample mean income for each age-group we can now use the special
function tapply(...):

> spend.means <- tapply(spend, age, mean)

giving a means vector with the components |abeled by the levels

> spend.means
-24  25-44  45-59 60+
27.20 35.53 33.42 17.65

Suppose further we needed to calculate the standard errors of the mean spends. To do thiswe
need to write an S function to calculate the standard error for any given vector. We discuss
functions more fully in §12, but since there is an inbuilt function var(...) to calculate the
sample variance, such afunction isavery smple one-liner, specified by the assignment:

> stderr <- function(x) sqrt(var(x)/length(x))
After thisassignment, the standard errors are calculated by
> spend.stderr <- tapply(spend, age, stderr)

and the values calcul ated are then

spend.stderr
-24  25-44  45-59 60+
3.70  2.33 4.55 2.70

The function tapply(...) can be used to handle more complicated indexing of a vector by
multiple factors. For example, we might wish to split the spend by both age and sex:

> tapply(spend, list(age, sex), mean)

The combination of a vector and a labelling factor is an example of what is called a ragged
array, since the subclass sizes are possibly irregular. When the subclass sizes are all the same
the indexing may be done implicitly and much more efficiently by using arrays. The function
apply isthe analogue of tapply for arrays.

The pattern of our survey can be seen by the table function, which takes a listing of factors
and returns the contingency table as an array, e.g.

> table(sex, age, TV.area, social, transport)



Loops and Conditional Execution 29

11 Loops and Conditional Execution

Commands may be grouped together in braces, {expr;; exprs;...; expr,r. Thevalue of
the group is the result of the last expression in the group evaluated. Since such agroupisaso
an expression it may, for example, beitself included in parentheses and used as part of an even
larger expression, and so on. Thisfacility ismost often used with the control statements of this
section.

The control statements are very close in spirit to those of the C programming language, and
only afew are mentioned here. There isaconditional construction of the form

> if (expri) expr, else exprs

where expr; must evaluate to alogical value and the result of the entire expression isthen evi-
dent.

There isaso a for—0op construction which has the form
> for (Name in expri) expr

where nameisadummy, expr; isavector expression (often asequencelike 1:20), and expr,
is often a grouped expression with its sub-expressions written in terms of the dummy name.
expr, isrepeatedly evaluated as name ranges through the valuesin the vector result of expr;.

As an example, suppose ind is a vector of class indicators and we wish to produce separate
plots of y versus x within classes. Usethe help facility to understand the following:

> yc <- split(y,ind); =xc <- split(x, ind)
> for (i in 1:length(yc)){plot(xc[[i]],yc[[1]1]1);
+ abline(lsfit(xc[[i]],yc[[i]1]1))}

(Notethefunction split(...) which producesalist of vectorsgot by splitting alarger vector
according to the classes specified by afactor.)

Other looping facilitiesinclude the
> repeat expr

statement and the

> while (condition) expr

statement. The break statement can be used to terminate any loop abnormally, and next can
be used to discontinue one particular cycle.

Loopsin S are often memory-hungry, and care may be needed not to use up all of your com-
puter’s memory. Expert advice is necessary on work-arounds.



Writing Your Own Functions 30

12 Writing Your Own Functions

Aswe have seen informally in §10.1, the S language allows the user to create hisor her own
functions. Thesearetrue S functionsthat are stored in aspecial internal form and may be used
infurther expressionsand so on. Inthe processthelanguage gainsenormously in power, conve-
nience and elegance. Most of the functionssupplied aspart of the S system, such asmean (. . .)
andvar(...) andsoon, arethemselveswrittenin S and thus do not differ materially from user
written functions. (However, increasingly such functions are being re-written asinternal func-
tionsto gain efficiency.) Listing these functions (by printing their name without parentheses)
isavery fruitful way to gain hints for writing your own functions.

A function is defined by an assignment of the form
> name <- function(arg;, args, ...) Expresson

The expression isan S expression, (usually a grouped expression), that uses the arguments,
arg;, to calculate avalue. The value of the expression isthe value returned for the function. A
call to the function then takes the form name (expr,, expr.,...) and may occur anywhere a
function call islegitimate.

For example, the IQR functionin Library (robust) isdefined as:

IQR <- function(y)

{
r <- quantile(y, <(.25, .75))
r[2] - rl1]

+

This first computes the quartiles, then returns the last value computed, their difference.

Note that any ordinary assignments done within the function are temporary and lost after exit
fromthe function. Thus r is not left behind, and does not affect any other object r.

If global and permanent assignments are intended within a function, then the ‘ superassign-
ment’ operator, ‘<<-' can be used. See the help documentation for details, and see also the
synchronize () function.

As asecond example of auseful function, consider afunction to evaluate the * Huber proposal
2’ robust estimator(s) of location and/or scale:

hubers <- function(y, k = 1.5, mu, s, initmu = median(y), tol = 1.0e-6)
{
y <= y['is.na(y)]
n <- length(y)
if (missing(mu)) {
mu0 <- initmu
nl <- n-1
} else {
mu0 <- mu
mul <- mu
nl <- n
}
if (missing(s)) {



Writing Your Own Functions 31

s0 <- mad(y)
} else {
s0 <- s
s1 <- s
+
th <- 2 * pnorm(k) - 1
beta <- th + k"2 * (1 - th) - 2 * k * dnorm(k)
repeat {
yy <- pmin(pmax(mu0 - k * s0, y), muO + k * s0)
if (missing(mu)) mul <- sum(yy)/n
if (missing(s)) {
ss <- sum((yy - mul)~2)/n1
sl <- sqrt(ss/beta)
+
if ((abs(mu0 - mul) < tol * s0) && abs(s0 - s1) < tol * s0)
break
mu0 <- mul
sO0 <- s1
+
list(mu = mu0, s = s0)

¥

This alows either of the location mu and scale s to be specified. Optional arguments are the
parameter k, the initial value for mu and a convergence tolerance. The first line removes all
missing values. Themissing () function checksif a parameter is supplied. Two constants are
then calculated as functions of k. The rest of the function isaloop. In general loops are ineffi-
cientin S and should be avoided if at all possible, but here we have no choice asthe calculation
isiterative. Finaly the function returns two components, the location and scale.

It is sometimes useful to be able to time commands:

cputime <- function(x) sum(unix.time(x)[-3])
elapsed <- function(x) unix.time(x) [3]

which return the total cpu time and the elapsed time taken by a command or sequence of com-
mands enclosed in {. . .}. Note: as these are functions, assignments inside them are in the
frame of the function rather than permanent. Alternatively, useproc.time () beforeand after
agroup of commands.



Satistical Models 32

13 Statistical Models

These facilitiesform the heart of the 1991 version of S. They are based on object-oriented ex-
tensions, so that generic functions such as print know what to do with the results of various
models. The two most basic notions are a data frame (§4.9) and a model formula.

13.1 Model Formulas

A model formula couples ay-vector with amodel expressed in aterminology very similar to
that of GLIM and GENSTAT. Theformis

> loss ~ hardness + tens

for the linear regression of loss on hardness and tens. Factors are replaced by a set of in-
dicator variables for the regression, and can interact via the : operator (not . asthisisavalid
character in avariable name). Thus we can have all the following constructs:

> time ~ poison + treatment + poison:treatment  equivalentto

> time ~ poison * treatment

> strength ~ yarns/bobbins nested |ayout

> gain ¥ group + initial paralel lines

> conc ¥ -1 + reading line thorough the origin
> conc ~ poly(reading, 2) quadratic polynomial

> conc ~ ns(reading, 4, intercept=T) natura spline

> conc ~ s(reading) smooth function, for gam

The syntax of alinear-model fitis
1m(model formula, dataframe)

wherethe namesin the model formularefer to columns of the dataframe, which can be omitted
if it has already been attached. For example

library(ripley)

attach(rubber)

tyres.lm <- 1m(loss ~ hard + tens)
summary (tyres.1lm)

anova(tyres.lm)

coefficients(tyres.lm)
plot(fitted(tyres.1lm), resid(tyres.lm))

VvV V V V V V VvV

This show how to extract information from afit by the use of ancillary functions. Thereareno
standard ancillary functions for standardized and Studentized residuals, but | have added them
asstdres() and studres() inlibrary(ripley).



13.2 One-way Layouts 33

13.2 One-way Layouts

The analysis of one-way layout is best illustrated by an example. The table gives data on ob-
served concentrations (ng/ml) of a chemical in groups of 10 patients after oral administration
of amitrine bismesylate:

drug dose (mg)

chems.aov <- aov(log(chemical) ~ group, chems) andonlogscae
summary (chems.aov)
summary (aov(log(chemical) ~ log(dose)+group, chems))
test for linearity of response

subject 25 50 100 200

1 34 92 256 229

2 46 150 271 232

3 50 81 270 288

4 49 155 120 195

5 21 85 333 354

6 52 95 198 288

7 30 95 109 288

8 29 82 140 170

9 27 110 147 522

10 51 99 196 296
> stdev <- function(x) sqrt(var(x)) Function to compute st. dev.
> chemical <- scan("chemical.dat")
> dose <- rep(c(25, 50, 100, 200), 10) Label the observationsby dose
> group <- factor(dose) Make afactor from the doses
> boxplot(split(chemical, dose))
> tapply(chemical, dose, mean)
> tapply(chemical, dose, stdev)
> chems <- data.frame(group, chemical) set up for AOV
> chems.aov <- aov(chemical ~ group, chems)
> summary(chems.aov) print out table
> coefficients(chems.aov) and the parameters
>
>
>

which gives

> summary(chems.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
group 3 356084.5 118694.8 28.91804 1.069219e-09
Residuals 36 147762.9 4104.5
> coefficients(chems.aov)

(Intercept) groupl group2 group3
168.375 32.75 44.11667 42.60833
> summary(chems.aov)
Df Sum of Sq Mean Sq F Value Pr(F)



13.2 One-way Layouts 34

group 3 22.93801 7.646003 74.7226 1.554312e-15
Residuals 36 3.68371 0.102325
> summary(aov(log(chemical) ~ log(dose)+group, chems))

Df Sum of Sq Mean Sq F Value Pr(F)
log(dose) 1 21.87397 21.87397 213.7692 0.00000000
group 2 1.06404 0.53202 5.1993 0.01038375

Residuals 36 3.68371 0.10233

The parameterization of linear models for designed experiments is a little tricky. The usual
parameterizationisto impose a‘sum to zero’ constraint on the parametersfor afactor. GLIM
setsthe parameter for thefirst level to zero, so that parametersfor thethe other levelsare differ-
ences between that level and thefirst. By default S uses the Helmert parameterization, which
compares the second and subsequent levels to the average of lower levels. The usua parame-
terization can be gotten as default by setting

> options(contrasts=c("contr.sum", "contr.poly"))
and the GLIM parameterization by

> options(contrasts=c("contr.treatment", "contr.poly"))

Of course, the parameterization only affects the coefficients, not the fitted values, residuals,
The contrasts for a particular term in a fit can be changed by the () function, e.qg.
C(group, sum) Or using contrasts.

Thereisa‘clever’ way totest for linearity using are-parameterization of thefactor group asan
ordered factor, for which thedefault parameterizationispolynomial in {1, ..., #(levels)}.
(Thisrelies on Log(dose) having levelsin an arithmetic progression. One could aways use
poly(log(dose),3) inplace of 1dose.)

> ldose <- ordered(factor(log(dose)))
> summary.lm(aov(log(chemical) ~ ldose, chems))

(Asfar as| can seethe use of summary . 1lmisnecessary to get resultsfor the individual coeffi-
cients.) This shows that the response can be regarded as quadratic in log(dose):

> summary.lm(aov(log(chemical) ~ ldose, chems))
Call: aov(formula = log(chemical) ~ ldose, data = chems)
Residuals:
Min 1Q Median 3Q Max
-0.5706 -0.2187 -0.001092 0.2806 0.6481

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 4.7750 0.0506 94.4089 0.0000
ldose.L 1.4790 0.1012 14.6208 0.0000
ldose.Q -0.3254 0.1012 -3.2168 0.0027
ldose.C 0.0228 0.1012 0.2255 0.8228

Residual standard error: 0.3199 on 36 degrees of freedom
Multiple R-Squared: 0.8616



13.3 Designed Experiments 35

F-statistic: 74.72 on 3 and 36 degrees of freedom,
the p-value is 1.554e-15

Correlation of Coefficients:
(Intercept) ldose.L ldose.Q

ldose.L. 0O
ldose.Q O 0
ldose.C O 0 0

13.3 Designed Experiments

The central concept for designed experimentsis afactor. Consider the famous Box-Cox poi-
sons data (survival times (in hours) of animalswith 3 poisonsand 4 antidotes, from Box & Cox
(1964), J. Roy. Statist. Soc. B26, 211-252 and Box, Hunter & Hunter (1977), Satisticsfor Ex-
perimenters). The function fac.design generates the rows, columns and so on — consult its
help page for full details.

stimes <- scan("poison.dat") datain hours
fnames <- list(treat=LETTERS[1:4], repl=1:4, poison=c("I","II","III"))
poisons<- data.frame(fac.design(c(4,4,3),fnames),stimes)

par (mfrow=c(3,2))

plot.design(poisons) plot main effects
plot.design(poisons, fun=median) and using medians
attach(poisons)

plot.factor(stimes ~ treat + poison,data=poisons) box plots
interaction.plot(treat, poison, stimes)

interaction.plot(treat, poison, stimes, fun=median)

poisons.aov <- aov(stimes ~ treat * poison) full fit
fits <- fitted(aov(stimes ~ treat + poison)) additivefit for 1dofna
summary (poisons.aov)

par(mfrow=c(2,2))

hist(resid(poisons.aov))

gqqnorm(resid(poisons.aov))
plot(fitted(poisons.aov),resid(poisons.aov))

summary (aov(stimes ~ treat + poison + fits”™2 + treat:poison))

which gives

> summary(poisons.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
treat 3 92.1206 30.70688 13.80558 0.0000038
poison 2 103.3012 51.65062 23.22174 0.0000003

treat:poison 6 25.0138 4.16896 1.87433 0.1122506
Residuals 36 80.0725 2.22424



13.3

Designed Experiments

36

B B
| © !
g° 3
£ D I £
B 10 2T D0 D
S 3T °
c 1 c
g -3 iz I
g~ c 8 c I b
£
™ A ™ A
1] 1]
treat repl poison treat repl poison
Factors Factors
N — ~ —
- ! -
o —_— o : —
=1 : — :
g — g : i
£ £ 1
@ © T @ ©
|- = | S -
~ — — ~ — E
A B C D 1l 1]
treat poison
poison © poison
© T " — |
@ - O~
uE) — E — |I
G o » o©
- G
o
g 8"
Q< o<
E E
i3l
M= B T o
treat treat
=] <
N .
A
3
ﬂ T N .
2
° 3
= 8 o .f'
e o
=] oo
) l : "
2 o .
)
o | | [ . °
-4 -2 0 2 4 -2 -1 0 1
resid(poisons.aov) Quantiles of Standard Normal
5%
< .
.
=
o T O
S o : 2 8
2 <
o . M * D
. . Q
R ' - 8 T . X
g o h 3 o i
= . o Y
h=} ¢ . o . [SHE
5 fe -
2 o .
o
.
: -
2 4 6 8 -2 -1 0 1
fitted(poisons.aov) Lambda

Figure5: Plotsfor Poison data



13.3 Designed Experiments 37

> summary(aov(stimes ~ treat + poison + fits"2 + treat:poison))

Df Sum of Sq Mean Sq F Value Pr(F)
treat 3 92.1206 30.70688 13.80558 0.0000038
poison 2 103.3012 51.65062 23.22174 0.0000003
I(fits"2) 1 15.3724 15.37242 6.91132 0.0125158

treat:poison 5 9.6413 1.92827 0.86693 0.5127325
Residuals 36 80.0725 2.22424

indicating the need for transformation. The I(...) function protects the argument from ex-
pansion; (treat+poison) "2 isequivalent to treat+poison+treat:poison and generaly
(factors) "n gives up to n-th order interactions.

There is no direct Box-Cox function, but we can do the operations by hand. They are quite
dow (25 secs on a SparcStation | PC), due to the overhead of calling the aov function:

xl <- seq(-2,1,by=0.1)
loglik <- as.vector(xl)
n <- length(stimes)
nlngm <- log(prod(stimes))
for(i in 1:length(x1)){
if (abs(x1[i]) > 0.01)
{
ss <- sum((aov(stimes~"x1[i] ~ treat + poison)$resid)"2)
loglik[i] <- n*log(abs(x1[i])) - n/2%log(ss) + (x1[i]-1)*nlngm
+
else
{
ss <- sum((aov(log(stimes) ~ treat + poison)$resid)~2)
loglik[i] <- - n/2%log(ss) - nlngm
+
+
plot(xl, loglik, xlab = "Lambda", ylab = "Log Likelihood", type = "1")
lambdahat <- loglik[loglik == max(loglik)]
limit <- lambdahat - 0.5 * qchisq(0.95, 1)
abline(limit, 0)
scal <- (par("usr")[4] - par("usr")[3])/par("pin") [2]
text(c(x1[1]), limit + 0.1 * scal, " 95%")

A more efficient way (4 secs) isto use the function BoxCox in thelibrary ripley:
> library(ripley)

> BoxCox(stimes ~ treat + poison)

Now consider a Latin square. Six litters of six piglets were ranked in order of birthweight,
providing a6 x 6 table, and each piglet given one of 6 dietary supplementsin a Latin square.
The weight gain (in kg) over 12 weeksis given in the table.



13.3 Designed Experiments

diet <- scan(,"")

= I v v B I T w R V4
WM Qb O
OwMH Q™

T O o O
M=o W
Q> O WM =

> wtgain <- scan()

5.74 7.21 5.92 6.58 7.24 4.83

5.92 5.74 7.88 6.53 6.73 6.05

8.18 5.87 5.41 7.49 7.44 6.43

3.58 5.21 5.61 4.39 7.63 5.44

6.05 8.16 6.27 5.84 6.71 5.77

4.95 6.35 5.56 7.50 7.04 6.22

> diet <- factor(diet)

> latin <- data.frame(fac.design(c(6,6), list(brank=1:6,litter=1:6)),
+ diet, wtgain)

> plot.design(latin)

> Diet <- C(diet, treatment)

> latin.aov <- aov(wtgain ~ brank + litter + Diet, latin)
> summary(latin.aov)

> summary.lm(latin.aov)

The last command gives t-valuesfor the contrasts (diet ? — diet A).

> summary(latin.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
brank 5 7.92405 1.584809 2.788687 0.04545633
litter 5 7.72041 1.544083 2.717023 0.04962477
Diet 5 11.61751 2.323503 4.088518 0.01015490

Residuals 20 11.36599 0.568299
> summary.lm(latin.aov)
Call: aov(formula = wtgain ~ brank + litter + Diet, data = latin)
Residuals:
Min 1Q Median 3Q Max
-2.051 -0.2906 0.1211 0.3715 0.9061

Coefficients:
Value Std. Error t value Pr(>ltl|)
(Intercept) 5.6050 0.3078 18.2122 0.0000

DietB 0.4617 0.4352 1.0607 0.3015
DietC 0.4033 0.4352 0.9267 0.3651
DietD 0.3550 0.4352 0.8156 0.4243
DietE  0.9700 0.4352 2.2287 0.0375
DietF 1.7583 0.4352 4.0399 0.0006




13.4 Generalized Linear Models 39

13.4 Generalized Linear Models

The functions 1m and aov have extensions glm which fits generalized linear models, and gam
which further extends this to allow semi-parametric smooth functionsin the explanatory vari-
ables. We can, for example, fit the poisons data by a gamma GLM:

attach(poisons)

poisons.glm <- glm(stimes ~ treat + poison, family=Gamma)
notethe‘'G’

summary (poisons.glm)

anova(poisons.glm) analysis of deviancetable

Once again there is a whole range of ancillary functions such as deviance, predict and
residuals. The latter will produce a four types of residuals, but uses deviance residuals by
default.

The family argument is also used to specify other aspects of the fit such as the link function.
For example, one can have family=binomial (1ink=probit)). With the binomial the re-
sponse can either beafactor (taken asfirst level vstherest) or amatrix with two columnsgiving
the number of successes and failures. Thereisaquasi family allowing user-defined models,
and arobust family generator allowing robust fitting. The scope for ingenuity is unlimited!

Binary Data

The following example is taken from D. Collett (1991) Modelling Binary Data, page 217.
Numbers of rotifersfalling out of suspension for two species (Polyartha major and Keratella
cochlearis) are given for different fluid densitiesin the table, asfilerotifer.dat:

density pm.y pm.tot kc.y kc.tot
.019 11 58 13 161
.020 7 86 14 248
.021 10 76 30 234
.030 19 83 10 283
.030 9 56 14 129
.030 21 73 35 161
.031 13 29 26 167
.040 34 44 32 286
.040 10 31 22 117
.041 36 56 23 162
.048 20 27 7 42
.049 54 59 22 48
.060 20 22 9 49
.060 9 14 34 160
.060 14 17 71 74
.061 10 22 25 45
.063 64 66 94 101
.070 68 86 63 68
.070 488 492 178 190
.070 88 89 154 154

[ T T = T e T o S S e O O S U SO O =Y

An annotated session follows. Severa points need further explanation.



13.4 Generalized Linear Models 40

The parametrizations need careful consideration. By default S uses alinear-model parameter-
ization, contrasting each level with the average of the previous levels. Thisis less useful for
GLMs. Thefirst way out below isto remove the overall mean (the -1 term) which forces sepa-
rate meansfor each species. We can also changeto the GLIM parameterization by theoptions
line.

Thereisacatch here. By default factor () numbersthefactor levelsin alphabetical order, so
we have to force the order we want (see §10).

0.8 1.0

pm.prop
0.6

0.4

0.2

0.0

1.02 1.03 1.04 1.05 1.06 1.07
density

Figure6: Plotsfor Rotifer data. The square symbolsand dashed lineindicate species Polyartha
major.

rotifers <- read.table("rotifer.dat", header=T)

rotifers list the dataframe
attach(rotifers)
kc.prop <- kc.y/kc.tot compute the proportions

pm.prop <- pm.y/pm.tot

and plot them
plot(density, pm.prop, type="n", ylim = c(0,1))
points(density, pm.prop, pch=0)
points(density, kc.prop)

fit separate modelsfor each species
glm.pm <- glm(cbind(pm.y, pm.tot-pm.y) ~ density, binomial(logit))
glm.kc <- glm(cbind(kc.y, kc.tot-kc.y) ~ density, binomial(logit))
glm.pm; glm.kc bare summaries
Now combine the two species
species <- factor(c(rep('pm",20), rep('"kc",20)),
levels= c("pm'", "kc"))
rotifer2 <- data.frame(dens = c(density, density),
yes = c(pm.y, kc.y), tot = c(pm.tot, kc.tot), species)
attach(rotifer2)
glm.rot <- glm(cbind(yes, tot-yes) ~ dens * species, binomial(logit))



13.4 Generalized Linear Models 41

glm.rot Note the parameterization used
glm.rot <- glm(cbind(yes, tot-yes) ~ -1+dens * species, binomial(logit))
glm.rot separate means for each species
options(contrasts=c('contr.treatment", "contr.poly"))

glm.rot <- glm(cbind(yes, tot-yes) ~ dens*species, binomial(logit))

glm.rot

summary (glm.rot)

anova(glm.rot) over-dispersion, but a common slope

looks OK
glm.rot <- glm(cbind(yes, tot-yes) ~ dens + species, binomial(logit))

lines(density, fitted(glm.rot) [species=="kc"])
lines(density, fitted(glm.rot) [species=="pm"], 1ty=3)
these lines are rather crude, so try harder!
xden <- seq(1.02, 1.07, 0.001)
yden <- predict(glm.rot, data.frame(dens=rep(xden,2),
species=factor(c(rep("pm", 51), rep("kc", 51)),
levels= c("pm", "kc"))), type="response')
lines(xden, yden[1:51], 1ty=3)
lines(xden, yden[52:102], 1lty=3)

Poisson Data

We consider the log-linear analysis of a contingency table. As this has two ‘history’ factors
and two levels of the the response, it could aso be treated as binomia data. The responseis
the occurrence of coronary heart disease. The tableis of the form:

blood pressure
serum
chd cholesterol 1 2 3 4

yes 1 2 3 3 4
2 3 2 1 3
3 8 11 6 6
4 7 12 11 1
no 1 117 121 47 22
2 85 98 43 20
3 119 209 68 43
4 67 99 46 33

with log-linear analyss:

num <- scan()
2334321381166 7 12 11 11
117 121 47 22 85 98 43 20 119 209 68 43 67 99 46 33

fnames <-list(press=1:4, serum=1:4, chd=c("y","n"))
kk <- data.frame(fac.design(c(4,4,2),fnames), num)



13.5 Updating and Selecting Models 42

kk.glm <- glm(num ~ serum*press*chd, family=poisson, data=kk)
anova(kk.glm, test="Chi")

kk.glml <- update(kk.glm, . ~ .-serum:press:chd)
par(mfrow=c(1,2)); plot(kk.glml)

The anova command gives an analysis of deviance for glm objects:

> anova(kk.glm, test="Chi")
Analysis of Deviance Table

Poisson model
Response: num

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev  Pr(Chi)

NULL 31 1644 .227
serum 3  77.370 28  1566.856 0.0000000
press 3 318.287 25  1248.570 0.0000000
chd 1 1169.609 24 78.960 0.0000000
serum:press 9  24.449 15 54.511 0.0036454
serum:chd 3  30.452 12 24.059 0.0000011
press:chd 3  19.284 9 4.775 0.0002388
serum:press:chd 9 4.775 0 0.000 0.8534820

13.5 Updating and Selecting Models

There are number of facilities to update models. The update function takes aresult of a pre-
viousfit and changes the model in some way.

add1 and drop1 show the (approximate) effectsof adding and dropping singleterms, and step
runsafairly general stepwisefitting procedure. (Notethat S-Plus 3.x hasaseparate stepwise
function for multiple regression.)



Multivariate Analysis 43

14 Multivariate Analysis

S-Plus is particularly rich is functions for exploratory multivariate analysis, such as pairs,
brush and spin. Thereare aso functionsfor classica multivariate analyss.

Clustering

Theworkhorses here are dist which computes distance matrices (also used in cmdscale) and
hclust which computes a cluster tree by single-, average- or complete linkage.

dist Distance matrix calculations
hclust Hierarchica clustering

cutree Create groups from a cluster tree
plclust Plot acluster tree

labclust Label acluster tree plot
clorder Re-order leaves of a cluster tree
subtree Extract part of acluster tree
mclust "model-based” clustering
mclass auxiliary functions

mreloc

Graphical Methods

Thisisavaried collection of functionsfor displaying multivariate data.

cmdscale Classical multi-dimensional scaling
faces Chernoff’s faces

mstree Minimal spanning tree

stars Star plots

biplot Biplot (v 3.2)

Two analyses of socio-economic data on Swiss cantons:

library(ripley)

d <- dist(swiss.x)

x <- cmdscale(d)

cl <= x[ ,1]; c2 <- x[ ,2]

eqscplot(cl, c2, type="n") # from library(ripley)
text(cl, c2, seq(cl))

h <- hclust(d)

plclust(h)

cutree(h, 3)

plclust(clorder(h, cutree(h, 3))) # re-order tree into three groups



Multivariate Analysis

44

Matrix Methods

The classical methods based on variance-covariance matrices.

mahalanobis Mahalanobis distances

cancor Canonical correlation analysis
discr Discriminant analysis

pcrcomp Principal components analysis
princomp Principal components analysis(v 3.2)
factanal Principal components analysis(v 3.2)

An example of discriminant analysis with Fisher’'siris data:

iris.var <- rbind(irisl[,,1], iris[,,2], irisl[,,3])

species <- rep(1:3,rep(50,3))

iris.dis <- discr(iris.var, 3)

iris.dv <- iris.var %*% iris.dis$vars # find discriminant variables

brush(cbind(iris.dv, species))

iris.x <- iris.dv[,1] ; iris.y <- iris.dv[,2]

iris.lab <- c(rep("s", 50), rep("c", 50), rep("v", 50))

plot(iris.x, iris.y, type="n", xlab="first discriminant variable",
ylab="second discriminant variable")

text(iris.x, iris.y, iris.lab, cex=0.7)

N c
vV
c c s
| c ¢
L{l) c @ ccC
c
@ v ¢ c
3 c ¢
s
3 v v eV 6 ¢ c s 3
T © v v ¢ ¢ s S
> T c %S
= v ¢ & §
] vV cc S gg
£ v Vo VY & ¢ ;S
E v v oc ® ¢ ¢ ¢ s
= S s
S N v \Y c s S
2 v v c s s s S
© v \ v ssss
e v v v ¢ e S
Q v ¢ s s
] @ - v v ¢ S s s
n v v s
Viv y s
4 s s
v Vv
v
Q v
Vv
v s
T T T T
-10 -5 0 5

first discriminant variable

Figure 7: Discriminant analysis



Libraries 45

A Libraries

Libraries are amechanism to add ‘ packages of extra objects (functionsand datasets) to S. To
find out which libraries are available type

> library()
which on one of my systems gave:

The following sections are available in the library:

SECTION BRIEF DESCRIPTION

chron Functions to handle dates and times.

examples Functions and objects from The New S Language.
external Handle external (large) objects.

image Display images.

maps Display of maps with projections.

progdraw Sdraw example from Programmer’s Manual.
progexam Examples from Programmer’s Manual.

semantics Functions from chapter 11 of The New S Language.
ripley B.D. Ripley’s teaching functions

For more information on each library section see the README file in
each library section directory or in S-PLUS run:
library( help = <section_name> )

Library sections from Venables & Ripley (1994)
‘Modern Applied Statistics with S-Plus’

MASS main library
nnet neural networks
spatial spatial statistics

To find out more about a section, use
> library(help=name)

e.g.

> library(help=robust)
functions for robust statistics

IQR(y) inter-quartile range

huber(y, k = 1.5) Huber location with MAD scale

hubers(y, k = 1.5, mu, s) Huber proposal 2 [with mu known, s known]
hreg(x, y, k = 1.5) Huber robust regression

datasets

chem copper in wholemeal flour

abbey nickel in syenite rock



Al Libraryripley 46

milk lead in milk powder

phones Belgian ’phone calls 1950-1973
To use thelibrary, invokeit by

> library(name)

which attachesit asadatadirectory at the end of the search list. Thuslibrariescannot over-ride
standard functions nor your own functions. To make alibrary over-ride the system functions,
use

> library(name, first=T)

which attaches it at position 2 (after the .Data directory).

A.1 Library ripley

Thisisacollection of useful functions and datasets for teaching at Oxford.

BoxCox(x,y) Box-Cox plot for transformations.
gl(from,to,size,x) replacement for GLIM ¥%GL.

egscplot equally-scaled plot function.
stdres(object) calculate standardized residual s from afit.
studres(object) calcul ate Studentized residua s from afit.

Datasetsin the library are:

accdeaths US accidental deaths 1973-8

cement dataset on heat evolved in setting cements

cpus dataset on performance of cpus

deaths time series on UK lung deaths 1974-9 from Diggle
mdeaths, fdeaths as above, for males and females

gehan remission times on leukaemia patients (censored)

forbes Forbes' dataset on boiling points, from Atkinson

hills dataset on times of Scottish hill races

leuk (uncensored) survival times on leukaemia patients

1h time series on |uteinizing hormone from Diggle

mammals body weight(kg) and brain weight (g) of mammals, from Weisberg
mcycle motorcycle impact data— Silverman JRSS B 1985
motorette accelerated life testing on motorettes

nottem time-series of temperatures in Nottingham, 1920-1939
road dataset on road deathsin the US

rock dataset on relating permeability to physical measurements
rubber dataset on rubber wear

ships ship damage incidents, from McCullagh & Nelder

trees Black Cherry trees heights, diameters and volumes

A.2 Sources of Libraries

Many S users have generoudly collected together their functions and datasets together into li-
braries and made them publically available. An archive of librariesis maintained at Carnegie-



A.2 Sourcesof Libraries 47

Mellon asaservicetothe statistical profession by Mike Meyer. To obtain details of its contents
by e-mail send amessage to

statlib@lib.stat.cmu.edu
with body

send index
send index from S

Ftptolib.stat.cmu.eduwith user statlibisalso available.



