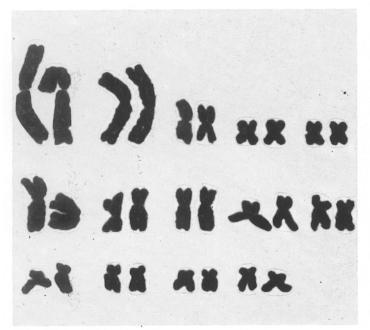
The karyotype of *Typhlonectes compressicauda* (Amphibia: Gymnophiona) with comments on chromosome evolution in caecilians¹

M.H. Wake, J.C. Hafner, M.S. Hafner, L.L. Klosterman and J.L. Patton

Museum of Vertebrate Zoology and Department of Zoology, University of California, Berkeley (CA 94720, USA), 23 January 1979

Summary. Typhlonectes compressicauda has a diploid number of 28. Its karyotype, when compared to that of other caecilians, suggests some discordance in the hypothesized model of chromosome reduction in the evolution of amphibian lineages.


Karyotypic information is now available for 15 species representing 3 of the 5 currently recognized families of caecilians²⁻⁴. The only member of the aquatic New World family Typhlonectidae karyotyped thus far is Chthonerpeton indistinctum5. This species, while having a number of derived morphological and physiological features that are associated with its aquatic habitus, also has the lowest diploid number reported for caecilians (2n = 20) and it lacks microchromosomes. Based on this and similar lines of evidence, it has been suggested that karyotypes provide evidence in support of the hypothesis that the general pattern of amphibian chromosome evolution is one of reduction in chromosome number (with loss of microchromosomes)6,7. Moreover, this reductional trend in chromosome evolution may be correlated with derived states in other features of amphibian biology8-11. In this report we describe the karyotype of another member of the family Typhlonectidae, Typhlonectes compressicauda, and reconsider the 'reduction' hypothesis of chromosomal evolution in light of new evidence presented herein.

Material and methods. 3 individuals (2 females and 1 male) of Typhlonectes compressicauda from Cienga Santo Tomás,

Departamento Atlantico, Colombia, were karyotyped. Specimens and karyotypic preparations will be deposited in the Museum of Vertebrate Zoology, University of California, Berkeley. Animals were injected i.p. with a 0.05% colchicine solution 6 h prior to sacrifice. The best preparations were obtained from an animal that had been injected with 0.5 ml of warm yeast suspension both 48 and 24 h prior to colchicine injection¹². Air-dried slides were prepared using gut epithelium and spleen according to the method of Patton¹³ except incubation in hypotonic solution was for 1 h and centrifugation was at 700 rpm. Metaphase spreads in which most or all of the chromosomes were not overlapping were used to determine the diploid number. 17 chromosomal spreads were analyzed.

Results. Typhlonectes compressicauda has a chromosomal complement consisting of 28 biarmed elements (figure). The karyotype contains 3 groups of chromosomes: metacentrics (2 large pairs, 3 medium to small pairs); submetacentrics (5 medium-sized pairs); and subtelocentrics (4 small pairs).

Discussion. A comparison of the nonpreferentially stained karyotypes of the 2 species of typhlonectid caecilians,

The karyotype of Typhlonectes compressicauda.

Typhlonectes compressicauda (2n=28; figure) and Chthonerpeton indistinctum (2n=20)5), reveals few similarities. Although the karyotypes of both species lack microchromosomes, they differ markedly in terms of gross chromosome morphology. For example, the 2 large pairs of metacentric chromosomes found in T. compressicauda and several species in the family Caeciliidae (e.g. Geotrypetes seraphini and Caecilia occidentalis²) are noticeably lacking in C. indistinctum⁵. Furthermore, the karyotype of T. compressicauda consists of totally biarmed elements, whereas that of C. indistinctum has 1 acrocentric pair. Although these differences appear to be rather pronounced, a more detailed comparison and final determination of chromosomal homologies within the Typhlonectidae and caecilians in general must await the time when chromosomal banding data are available.

Karyotypic information on the Gymnophiona has accumulated fairly rapidly over the last few years, and although banding data are not as yet available to allow detailed comparisons, the new information allows a re-examination of hypotheses concerning chromosomal trends in the order. Prior to this report, available chromosomal information on caecilians has generally supported the hypothesis that there exists an evolutionary trend towards reduction of diploid number and loss of microchromosomes in the towards reduction of diploid number and loss of microchromosomes

somes in the more derived forms. For example, *Ichthyophis* (Ichthyophiidae), considered one of the most primitive caecilians in features of morphology and life history¹³⁻¹⁵, has the highest diploid number reported for caecilians. Conversely, *Chthonerpeton*, a member of the highly derived Typhlonectidae, has the lowest diploid number reported thus far for caecilians. In addition, while the primitive ichthyophiids all have 7 or more pairs of microchromosomes, the more derived caeciliids and typhlonectids have fewer pairs or lack microchromosomes entirely.

A re-evaluation of the caecilian chromosomal data, plus the addition of new information, reveals several facts inconsistent with the chromosomal reduction paradigm. For example, within the Typhlonectidae, *T. compressicauda* has several morphological features that appear more highly derived than those of *C. indistinctum* (e.g. lung structure, reproductive morphology, aspects of kidney morphology, etc.)¹⁶. However, contrary to predictions based on the chromosome reduction hypothesis, the derived form (*T. compressicauda*) has the higher diploid number of the 2 forms.

The chromosomal reduction hypothesis also predicts that more primitive forms would, in general, have more microchromosomes than related derived forms. However, among the caeciliids, the forms *Caecilia occidentalis* and *Siphonops paulensis*, which are primitive in several morphological and life history features ¹⁶, entirely lack microchromosomes ¹⁷. More derived caeciliids, such as *Geotrypetes seraphini*, *Dermophis mexicanus*, and *Gymnopis multiplicata*, all have 4 or more pairs of microchromosomes.

Further evidence that appears contrary to the chromosomal reduction hypothesis stems from recent taxonomic revision of the Ichthyophiidae^{4,14}, a family considered primitive in many characters. The genus *Uraeotyphlus* (2n=36), now considered an ichtyophiid⁴; has a lower diploid number than does the caeciliid *Geotrypetes seraphini* $(2n=38)^2$ which is derived in features of morphology and life history^{16,19}.

These discrepancies between the hypothesized chromosomal reductionary trend within caecilians and primitive versus derived states based on life history and morphology do not constitute a refutation of the hypothesis. Indeed, within caecilians there appears to be a general pattern of lower diploid numbers in primitive forms with higher diploid numbers in more derived forms; the model need only accommodate a moderate degree of discordance, or alternatively, be modified to account for the discrepancies mentioned above. Generalizations, though, concerning trends in caecilian chromosome evolution may be difficult to formulate at present, inasmuch as proportionately few species of caecilians have been karyotyped, and taxonomic relationships within the order are as yet unsettled^{4,13,15,19}.

- 1 We thank Sharon B. Emerson and Diana Diehl, University of Illinois at Chicago Circle, for helping us to acquire specimens. The work was supported by National Science Foundation Grant DEB 77-22642 to MHW.
- 2 M.H. Wake and S.M. Case, Copeia 1975, 510 (1975).
- 3 T. Seto and R.A. Nussbaum, Caryologia 29, 317 (1976).
- 4 R.A. Nussbaum, Occ. Pap. Mus. Zool. Univ. Mich. 687, 1 (1979).
- 5 A. Barrio, F. Saez and P. Rinaldi de Chieri, Caryologia 24, 435 (1971).
- 6 R. Matthey, Adv. Genet. 4, 159 (1951).
- 7 A. Morescalchi, Biol. Zool. 38, 317 (1971).
- 8 A. Barrio and P. Rinaldi de Chieri, Physis 30, 305 (1970).
- A. Morescalchi, in: Cytotaxonomy and vertebrate evolution, p. 233. Ed. A. B. Chiarelli and E. Campanna. Academic Press, New York 1973.

- 10 A. Morescalchi, Evol. Biol. 8, 339 (1975).
- 11 A. Morescalchi, in: Major patterns of vertebrate evolution, p.149. Ed. M.K. Hecht, P.C. Goody and B.M. Hecht. Plenum Press, New York 1976.
- 12 C.J. Cole and C.R. Leavens, Herp. Rev. 3, 102 (1971).
- 13 E.H. Taylor, The caecilians of the world: a taxonomic review. Univ. Kansas Press, Lawrence 1968.
- 14 R.A. Nussbaum, Occ. Pap. Mus. Zool. Univ. Mich. 682, 1 (1977).
- 15 E.H. Taylor, Univ. Kansas Sci. Bull. 48, 585 (1969).
- 16 M.H. Wake, unpublished data.
- 17 A. Barrio and P. Rinaldi de Chieri, Physis 31, 273 (1972).
- 18 N.B. Elayedom, S. Rayan-Subramaniam and M.K. Subramanian, Curr. Sci. Bangalore 32, 274 (1963).
- 19 M.H. Wake, J. Herpet. 11, 379 (1977).

ERRATA

Wake, M. H., J. C. Hafner, M. S. Hafner, L. L. Klosterman, and J. L. Patton.

1980. The karyotype of <u>Typhlonectes compressicauda</u> (Amphibia: Gymnophiona)
with comments on chromosome evolution in caecilians. Experientia 36:171-172.

Page 172, Column 1, Paragraph 2, Lines 9-10; Column 2, Paragraph 2, Line 1.

Change from: "number and loss of microchromosomes in the towards reduction of diploid number and loss of microchromosomes in the more derived forms."

To read: "number and loss of microchromosomes in the more derived forms."

Page 172, Column 2, Paragraph 5, Lines 6-7.

Change from: "lower diploid numbers in primitive forms with higher diploid numbers in more derived forms;"

To read: "higher diploid numbers in primitive forms with lower diploid numbers in more derived forms;"