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Abstract. It has long becn known that asymmetric electric and magnetic ficlds produce radial
transport in Malmberg-Penning traps, and much work has been done to understand this transport.
Our approach is 1o apply a variable {requency electric asymmetry to a low density population of
electrons and 10 measure the resulting radial particle flux I' as a function of radius r. The low
particle density eliminates many plasma modes (which have their own frequency dependence) and
allows us to focus on the transport physics. The usual azimuthal E x B drift is maintained by a
biased central wire, and this arrangement also allows us to independently vary the drift frequency
wnr by adjusting either the axial magnetic ficld B, or the bias of the central wirc ¢e.. Up to
forty wall scctors are used in order to apply an asymmetry consisting of a single fourier mode
(n,l,w), where = is the axial wavenumber, ! is the azimuthal wavenumber, and w is the asymmetry
frequency. In the current experiments, we vary w, n, ¢cyg, and B,. As w is varied, the particle
flux shows a resonance similar to thal predicted by resonant pariicle theory. The peak frequency
of this resonance fpeqx increases with wp and varies with », in qualitative agreement with theory,
but when quantitative comparisons ar¢ made the experimental values for fpear do not match those
predicted by theory. Instead, the dependence of fp.ax OR Gcw. B:, and r follows simple empirical
scaling laws: for inward directed flux, fpear(MH2) & [— Ropeus (V)/r B (G)|*/2, where R is the
wall radius, and for outward directed flux, fpear(MHz) = 0.8|—dew(V)/B:(G)]'/2. Thesc results
may provide guidance for the construction of the correct theory of asymmetry-induced transport,

INTRODUCTION

It has been known for some time that the confinement in Malmberg-Penning traps is
limited by the presence of electric or magnetic fields that break the cylindrical symmetry
of the trap. Such asymmetries produce a radial component to the E x B or grad-B dnft
that leads to particle loss. This basic understanding is supported by confinement studies
[1, 2] as well as experiments with applied electric [3, 4, 5, 6, 7, 8] and magnetic [9. 10]
asymmetries.

Many of these early papers also suggested that this asymmetry-induced transport
might be described by a theoretical model developed for studies of radial transport in the
early tandem mirrors (see, e.g., [11, 12]) where static, asymmetric end cells produced
radial grad-B drifts that largely determined the radial particle flux. A key prediction
of the theory is that the resulting transport will be dominated by particles whose axial
bounce motion and azimuthal drift motion causes them to move in resonance with the
asymmetry. As these resonant particles repeatedly encounter the asymmetry they take
radial steps in the same direction, thus allowing them to diffuse more quickly than non-
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resonant particles.

Here we present experiments that test this key prediction of the theory. We do this by
applying a variable frequency electrostatic asymmetry to a Malmberg-Penning trap and
measuring the resulting radial particle transport as a function of the asymmetry frequen-
cy. Our modified trap design avoids previously encountered complications produced by
collective effects and allows for a clean test of the transport physics. While the experi-
mental results are qualitatively consistent with theory and seem to confirm the dominant
role played by resonant particles, the frequency dependence of the transport does not
quantitatively match the predictions of theory.

ASYMMETRY-INDUCED TRANSPORT THEORY AND
EXPERIMENTAL APPROACH

Our experiments are performed in a modified Malmberg-Penning trap in which the
plasma has been replaced by a biased wire and the transport of low density test particles
is studied. This experimental approach is best understood in the context of asymmetry-
induced transport theory, so we begin with a summary of the theory as recently adapted
to Malmberg-Penning traps and allowing for electric field asymmetries at a non-zero
angular frequency w [13]. The theory assumes a cylindrical geometry with an axial
magnetic field B,. Asymmetric electric fields are applied by placing voltages on wall
sectors. Under these conditions, the resulting radial particle flux for the plateau regime
(suitable for small asymmetry amplitudes) is given by (see reference [13] for details)
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Here ¢y, (r) is the Fourier amplitude of the asymmetry mode characterized by axial
mode n, azimuthal mode ¢, and angular frequency w. For simplicity, we have assumed
here that the temperature 7' is constant with radius. The variable x is equal to v,c,/ V27,
where

Yres — (= luog) @
nw

is the resonant velocity for the asymmetry mode n,/,w and wg, is the azimuthal &' x B
rotation frequency of the plasma column. The symbols nq, L, ¥, and w. denote the elec-
tron density, plasma length, thermal velocity, and the cyclotron frequency, respectively.
It is worth noting several features of Eq. (1). The radial flux involves a sum over all
the asymmetry modes produced by the wall voltages. The square brackets contain a
diffusive term niod—;‘f and a generalized mobility \/.5.% fex (note that this latter term
reduces to eE/kT for w = 0). The plateau regime flux is proportional to the square
of the asymmetry amplitude ¢2,,. Our previous studies of the amplitude scaling [8] of
this transport suggest that we are in the plateau regime, but the results of this paper are
not dependent upon that identification because both the plateau regime and the banana
regime suitable for higher asymmetry amplitudes have the same frequency dependence.
The previously mentioned domination of the transport by resonant particles is reflected
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in the e=*° factor, which stems from evaluating the Maxwellian distribution function
at the resonant velocity. Note that x can be positive or negative since w may be
greater than or less than wr. Here, we use the convention that w > () corresponds
to an asymmetry that rotates with the plasma column and w < 0 corresponds to one
that rotates against the column. When the second term in brackets dominates over
the first, a static field asymmetry (w =0, x < 0) will move electrons radially outward
(T > 0), but an appropriately chosen asymmetry (w > wg, £ > 0) can move particles
radially inward. Such inward transport has been observed in “rotating wall” experiments
[3. 5, 14. 15, 16].

The presence of « in the variable  provides the experimentalist with an ideal way
of testing the notion that resonant particles dominate the transport. By varying w, one
can obtain any value of the resonant velocity vr.s (see Eq. (2)) while keeping other
experimental parameters fixed. The resulting radial flux should then exhibit a resonance
as Uy, sweeps through the distribution function. The ability to place vy in the bulk
of the distribution function also makes it possible to obtain a measurable amount of
radial transport while keeping the asymmetry amplitude low. This approach, however,
is complicated by the strong w-dependence of the asymmetry potential ¢u.(r) in the
plasma. Numerical studies for typical plasma parameters [13] show that the transport-
producing electric field in the plasma (i.e. Ey = l@u./r) can vary by many orders
of magnitude as adjustments of w produce plasma phenomena ranging from standing
waves to Debye shielding. These variations in £y (and thus in the radial flux I) tend
to dominate or mask those produced by resonant particle effects. This produces, for
example, enhanced transport when the asymmetry drives a helical standing wave of the
plasma column as was observed in previous experiments [3, 14, 15, 16]. While these
collective processes are interesting, they are not essential to the transport physics. In
this context we note that these numerical studies also show that the variations of Ey with
w can be reduced as the temperature is increased or the density is reduced.

These considerations led us to employ the modified trap design shown in Fig. 1. The
axial magnetic field and negatively biased end cylinders of the standard trap design are
retained, but the plasma is replaced by a thin biased wire (0.356 mm diam.) suspended
along the axis of the trap. This wire provides a radial electric field to replace the field
normally produced by the plasma column and allows low density electrons injected
into this device to have the same zeroth-order dynamical motions as those in a typical
non-neutral plasma (axial bounce and azimuthal £ x B drift motions). The collective
variations of ¢y, (r), however, are minimized since the lower density (10° cm™=?) and
higher temperature (4 eV) of the electrons give a Debye length (Ap = 4.7 cm) larger
than the trap radius (R = 3.82 cm). Under these conditions, the applied asymmetry
potentials are essentially the vacuum potentials and their w-dependence is eliminated.
In short, we have constructed a trap where the electrons will act as test particles moving
in the prescribed fields. Despite these changes, thc confinement time scaling with no
applied asymmetries [17] shows the same (L/B,)? dependence found in higher density
experiments [1, 2], supporting the notion that the radial transport is primarily a single
particle effect.

Experiments studying asymmetry-induced transport typically use azimuthally sec-
tored cylinders in the confinement region to apply asymmetric electric fields. In our de-
vice, we have sectored the entire confinement region (five cylinders, labeled S1 through
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FIGURE 1. Schematic of the Occidental Trap. The usual plasma column is replaced by a biased wire
that maintains the basic dynamical motions of low density electrons injected from an off-axis gun. The
low density and high temperature of the injecied electrons largely eliminates collective modifications of
the vacuum asymmetry potential. The five cylinders labeled S1 through S5 are divided azimuthally into
eight sectors. These forty wall sectors allow for the application of asymmetrics consisting of essentially
one Fourier mode.

S5 in Fig. 1, with eight azimuthal divisions each), for two reasons. The first reason is
to ensure that the applied potentials stay small enough for the theory to be valid. When
the potential ¢y is applied on a single sector of length L,, the amplitude of the Fourier
modes will be proportional to (Ls/L)}¢w, where L is the length of the plasma. The
smaller L,/L is, the larger the wall potential necessary to produce a mode ¢,y,, of given
amplitude and thus a given amount of transport. The amplitude of the wall potential,
however, is not unrestricted: linear theory assumes the trajectories of the electrons are
not radically different from the unperturbed case, and thus requires edw << £7,. In
order to satisfy the theoretical assumptions while producing an observable amount of
transport, it is thus advantageous to sector the entire confinement region.

The second reason for our modifications to the confinement region is to allow a clean,
unambiguous test of theory. As previously noted, the theoretical expressions for the
radial flux involve a sum over Fourier modes n, {, and w, with each mode contributing
to the total transport. Experimental measurement of the flux, however, produces a single
number I". Comparison to a theoretical expression that involves a sum over terms will
therefore always be somewhat ambiguous since the combination of terms producing
a given flux value is not unique. The least ambiguous case would involve a single
Fourier mode, but this requires many wall sectors. Forty sectors is a number that can
be reasonably handled and represents a great improvement over previous experiments.
By judiciously selecting the amplitude and phase of the signals applied to each sector,
we can produce an asymmetry that is essentially a single Fourier mode, with higher
harmonics typically having amplitudes smaller than 10% of this mode’s. For these
experiments, we used a helical standing wave of the approximate form

nrz
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T

o(r,0,2,t) = dw 7608 (
where ¢y is the asymmetry potential at the wall (typically 0.2 V), R is the wall radius
(3.82 cm), L is the length of the confinement region (76.8 cm), and 2z is measured
from one end of the confinement region. This asymmetry, which decomposes into
oppositely propagating helical modes, will allow particles to maintain resonance with
the asymmetry when they bounce off the ends of the trap and change direction. For most
of this work, the wall sectors are configured to give an asymmetry wherethe n=1,1=1
mode is dominant. By adjusting the relative phase of the applied signals, the asymmetry
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can be made to rotate either with the zeroth-order azimuthal drift (w > 0) or against it
(w < 0).

With the frequency dependence of ¢,,.(r) eliminated by increasing the Debye length
and the sum over modes removed by the strategic use of multiple wall sectors, the
expression for the flux can be simplified to

I'= —C|[A+ Ba]e™ 4

where A = dny/dr. B = V2norw.nn/(ITL), and C contains the remaining factors in
Eq. (1). The remaining frequency dependence is contained in the normalized resonance
velocity x. As the asymmetry frequency is varied, the flux will have extrema when
dl'/dz = 0. Applying this to Eq.(4) and solving for x gives

1| 4 1rA\?
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Note that the solutions for pe. depend only on the ratio A/B. The two solutions
correspond to two flux peaks of opposite signs, with the plus sign corresponding to
flux minima and the minus sign corresponding to flux maxima. Because of the Gaussian
dependence on x in Eq. (4). often only one of these peaks will be sizable.

The remaining features of the trap have been discussed in detail elsewhere [17, 18].
Electrons injected into the trap from an off-axis gun are quickly dispersed into an annular
distribution. At a chosen time (here, 1600 ms after injection), the asymmetries are
switched on for a period of time §¢ (here, 100 ms) and then switched off. At the end
of the experiment cycle, the electrons are dumped axially onto a phosphor screen and
the resulting image is digitized using a 512 x 512 pixel charge-coupled device camera.
A radial cut through this image gives the density profile no(r) of the electrons. where
calibration is provided by a measurement of the total charge being dumped. Profiles are
taken both with the asymmetry on and off, and the resulting change in density dng(r) is
obtained. If the asymmetry amplitude is small enough and the asymmetry pulse length
&t short enough, then dng(r) will increase linearly in time. We may then approximate
dng /dt ~ éng(r} /6t and calculate the radial particle flux I'(r) (assuming I'(r = a) = 0):
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Here a is the radius of the central wire. The entire experiment is then repeated for a
series of asymmetry frequencies and the resulting flux vs. radius and frequency data
saved for analysis.




EXPERIMENTAL RESULTS

A typical result is shown in Fig. 2 where we plot the radial flux I vs. asymmetry
frequency f for four selected radii. The radial density profile is shown in the inset.
There are several things to note in this figure. First, note that the predominant flux peaks
occur only for positive frequencies. This is in marked contrast to other expertments
[3, 14, 15, 16] where driven plasma modes (which occur for both positive and negative
frequencies) dominated the transport and produced flux peaks for both positive and
negative frequencies. The data thus supports the conclusion that we have effectively
limited the role of collective modes in the experiment. Second, the fact that the flux
peaks occur only for positive frequencies is in qualitative agreement with the theory. As
Eq. (4) shows, the frequency dependence of the theoretical flux is constrained by the
factor ==, a Gaussian curve centered where w = lwg. Since wg, is a positive quantity
and the Gaussian width A f = /2n%/L here is about 1.5 MHz, the flux produced by
negative frequencies is expected to be small. Finally, note that both positive and negative
fluxes are observed and that the flux peaks occur at different frequencies. This also
seems to be qualitatively consistent with the theory. When the density gradient is large,
the first term in the square brackets of Eq. (4) will dominate and we expect a bell-shaped
curve, opposite in sign to dng/dr, centered around w = lwg. This behavior is shown by
the curves for r/R equal to 0.19, 0.30 and 0.52 . Note that in our experiment wg is set
by the center wire bias ¢.., and decreases with radius

N -C¢aw
YR 2B, In(R/a) ®
and thus it is expected that the flux resonances will shift to lower frequencies with radius,
as observed. Near the top of the density profile, the gradient is near zero, so the second
term in the square brackets of Eq. (4) will dominate. We then expect an xe~*" behavior,
consistent with the shape of the r/ R = 0.39 curve.

To further check that the resonances are associated with wg, we have varied the center
wire bias ¢, and the axial magnetic field B,. As expected, the flux resonances maintain
their general shapes but shift to higher frequencies as the magnitude of ¢, is increased
and to lower frequencies as B, is increased (see reference [19] for details).

As seen in Eq. (6), the theory also predicts a variation of fp.., With axial mode number
n. To check this, we applied n = 2 and 3 asymmetries to the wall sectors. The results are
shown in Fig. 3 along with data from the n = 1 configuration. Here we use an alternate
method of displaying the frequency dependence of the flux: we plot the frequency at
which the flux has an extremum, [peax. versus radius. Data corresponding to both
positive and negative flux peaks are shown. The points in the upper left portion of the
graph give the frequencies of the negative flux peaks (flux minima) while the points in
the lower right portion of the graph correspond to the positive flux peaks (flux maxima).
The fall off of fpeqar With radius is clear, as expected from the dependence of wg on r.
The upward shift of fpeqr With n is also clear, and the inset of the figure shows that fpe
increases linearly with n for three representative radii. The n-dependence of Eq. (6) is
not simple (note that 33 oc n), but deviates only slightly from linearity for experimental
values of A/B and n (-1 < nA/B < 2). The observed n-dependence is thus consistent
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FIGURE 2. Radial particle flux at four selected radii as a function of asymmetry frequency for center
wire bias ¢, -110 V, magnetic field 13 =364 G, and Fourier mode numbers » — 1, { = 1. The shapes of
the flux curves are qualilatively consistent with that expected from theory. Positive frequencics correspond
to experiments where the asymmetry is rotating in the direction of the electron’s azimuthal E x B drift
and negative frequencics correspond o counter-drift rotations. The clectron density ng (10° ecm %) versus
scaled radius »/ R is shown in the inset.
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FIGURE3. fp.q1 versus r for three values of the axial mode number 7. The filled symbols in the upper
lelt portion of the graph give the frequencies at which the flux is a minimum while the open symbols in
the lower right portion of the graph correspond to frequencics of the flux maxima. A linear increase of
fpeak With n is shown in the inset for three representative values of scaled radius r/R. Here, dow = -146
Vand B. =364 G.




with Eq. (6) for the flux minima data. For the flux maxima data, however, Eq. (6) predicts
that fp..r will decrease with n, in contrast to the observed increase with n. Nevertheless,
the dependence of fpeax On n shows that the transport we are studying depends on axial
variation in the asymmetry, in contrast to earlier work on radial transport induced by
n = 0 diocotron waves [20]. We have also verified that fpqx shifts upward appropriately
for [ = 2 asymmetries.

The dependence of fpear ON P, B, and r obeys an empirical scaling law, as shown
in Fig. 4. Data with values of ¢, from -20 V to -140 V and B, values from 243 G
to 607 G were scaled according t0 fscaied = f,,ﬁ(,,k\/_:g-—: and plotted versus v/ K. The
number of radial points plotted for each case was reduced for clarity. Although there is
some scatter in the data, a fairly good universal curve is formed. The frequencies for
the flux minima also scale inversely with the square root of the radius, as shown by the
solid line. The scaling law for these points is thus

—fulV) R
BAG) r’

The frequencies for the flux maxima decrease slightly with radius, but the scatter in
the data is too large to validate a particular radial dependence. If we ignore the radial
variation, we obtain the rough scaling law

] —Ns _¢cu1(v)
f,,mk(MHz)—O.S\/—————BZ R

As we have seen, the parametric dependence of fpeax ON ¢cw, 3, . and, for the
flux minima, n is qualitatively consistent with theory (i.e. fpear increases and decrease
appropriately). A quantitative comparison of experiment and theory, however, reveals
serious discrepancies. To illustrate this, we have used experimental values to evaluate
Eq. (6) and found f,..x as a function of radius r for the case where n=1,1=1, B, = 364
G and @ew = -146 V. The results are shown in Fig. 5 along with the experimental data
and the calculated fzp. While the experimental frequencies for the flux minima (solid
circles) match the theory for r/R ~ 0.4, they clearly diverge from theory at smaller
radii. More seriously, the theory for these negative flux peaks constrains fye.. to be
greater than the rotation frequency fr, but the experimental data clearly crosses the fr
line, shown dotted in the figure. Flux minima data for n = 2 and 3 show similar behavior
and a similar level of agreement. The data for the frequencies of the flux maxima (open
circles) do not match the theory at any point. The theory for the positive flux peak shows
foear going smoothly through zero to include negative values, while the experimental
values always remain positive. Finally, as noted above, the theory has fpeas for the flux
maxima decreasing with n, whereas the experiment shows an increase with n.

There are several simplifying assumptions made in the theory which might be in-
volked to account for the discrepancy between theory and experiment. The theory used
here assumes that the plasma particles specularly reflect at the ends of the trap and that
this reflection point is the same at all radii (i.e. L is not a function of radius). The theory
also assumes that the rotation frequency wg is not a function of axial position z. While
these assumptions are clearly violated in our experiment, our estimates of these effects
give corrections that are too small to account for the observed discrepancies.

f pea.k(MHz) =
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FIGURE 4. Empirical scaling of fpeqx. Data having various values of B. and ¢, were scaled ac-
cording 10 focated = Speak y /:%z and plotted versus the scaled radius 7/R. Solid lines show simple

"universal” curve fits to the resulting data points.
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FIGURES. Comparison of experimental and theoretical values for fpeqr. Experimental density profiles
are used in Eq. (6) to produce the theory curves shown by the solid lines. Experimental data is also shown
for this case, where B; = 364 G and ¢, = -146 V. The rotation frequency fr is shown by the dotted line
for comparison.

The theory used here also assumes that the plasma temperature 7T is constant with
radius. A radial temperature variation would add a term ",—}.‘1%(:1?2 — 1) to the square
brackets of Eq. (4) and thus change the theoretical predictions for f,eq.. Measurements
of T'(r} in our experiment, however, show that this correction would also be too small to
account for the discrepancies.
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CONCLUSION

We have measured the frequency dependence of asymmetry-induced transport under
very simple experimental conditions and compared the results to resonant particle the-
ory. Our results are qualitatively consistent with the theory and support the idea that
resonant particles dominate the transport, but the quantitative predictions of the simple
theory employed here do not match the experiments. Apparently, the current theory
does not give a complete description of this transport.
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