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Abstract. While it is easy to experimentally demonstrate that applied field asymme-
tries produce radial transport, convincing comparisons of experiment and theory have
yet to be made. A key prediction of the theory is that the transport will be dominated
by particles that move in resonance with the asymmetry. For the general case of a
time-varying asymmetry, the resonance condition is w — lwg — kv = 0, where v is the
axial velocity, wg is the E x B rotation frequency, and w, [ and k are the asymmetry
frequency, azimuthal and axial wavenumbers, respectively. We present experiments
on our low density trap in which w, wg, and k are varied and the resulting radial
particle flux is measured. - The experiments show a resonance in the flux similar to
that predicted by theory. The peak frequency of this resonance increases with wr and
k, but not in the way theory predicts. The peak magnitude of the measured trans-
port is roughly forty times smaller than the theoretical prediction, and low-frequency
asymmetries are especially ineffective at producing transport.

INTRODUCTION

Plasma traps of the Malmberg-Penning type have been found to be useful in a
variety of fields including basic plasma physics, atomic spectroscopy, anti-matter
physics, and mass spectroscopy. Early studies of the confinement time of such
traps found good agreement between experiments [1] and a transport theory {2]
based on collisions with neutrals. However, at the lowest neutral pressures the
confinement time was much lower than expected [3] and decreased with machine
length [4]. It was suggested that this anomalous transport was due to the presence
of electric or magnetic fields that break the cylindrical symmetry of the trap. The
presence of such asymmetries would produce a radial component to the E x B
drift that would lead to particle loss. This notion was later supported by further
confinement studies [5] as well as experiments with applied asymmetries {6-8].

‘These early papers also suggested that the asymmetry-induced transport might
be described by a theoretical model developed in early studies of radial transport
in tandem mirrors [9-13] where static asymmetric end cells produced radial grad-
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B drifts that largely determined the radial particle flux. A key prediction of the
theory is that the resulting transport will be dominated by particles whose axial
bounce motion and azimuthal drift motion causes them to move in resonance with
the asymmetry. As these resonant particles repeatedly encounter the asymmetry
they take radial steps in the same direction, thus allowing them to diffuse more
quickly than non-resonant particles. »

We have recently adapted this theory to Malmberg-Penning traps [14] and in this
paper present our first attempts to test the theory using an experimental device
specifically designed for the task. While the experiments provide evidence for
the dominance of resonant particles they also contradict other predictions of the
theory.

ASYMMETRY-INDUCED TRANSPORT THEORY

The geometry of the non-neutral experiments is cylindrical with an axial mag-
netic field B. The magnetic field is typically strong enough that the Larmor radius
is much smaller than any other scale length in the plasma and all relevant frequen-
cies are small compared to the cyclotron frequency. Asymmetric electric fields are
applied by placing voltages on wall sectors. Under these conditions the basic equa-
tions for a non-neutral plasma are Poisson’s equation, the drift kinetic equation with
a collision operator, and the boundary conditions on the conducting walls. For sim-
plicity we take as our model a plasma of length L with flat ends, thus ignoring end
effects. This allows us to linearize the potential as ¢(r, 8, z,t) = ¢o(r) + ¢1(r, 8, 2, 1)
where

S1(r,0,2,8) = 3 ¢n;w(r) . exp {z (%z 7 wt)} (1)

n,lw

and similarly for the distribution function f. For an electron plasma (¢ = —e)
" Poisson’s equation then becomes
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where wg, is the azimuthal E x B rotation frequency of the plasma column, ¢n,(r)
is the Fourier amplitude of the asymmetry mode characterized by axial mode n,
azimuthal mode [, and frequency w, and the integral is over the axial velocity v.
The form of the resulting radial particle flux depends on the relative size of
an effective collision frequency v,s¢ and the oscillation frequency wr of particles

. : 2
trapped in the asymmetry potential, where yfff RS Ve (l}‘l—”) and
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When v.ss >> wr, frequent collisions interrupt the trapped particle orbits and
the basic radial step is the radial drift velocity times the time between collisions.
Deviations from unperturbed orbits are small and a perturbation approach is ap-
propriate. This is called the resonant plateau regime. When v sy < wr, a trapped
particle can complete at least one oscillation before a collision knocks it out of res-
onance. Now the basic radial step is the radial extent of the drift during a trapping
oscillation and the orbits are fully nonlinear. A heuristic derivation of the resulting
radial flux is often employed for this so-called banana regime. The resulting radial
particle flux for the plateau regime is given by (See reference [14] for details)

2
> ng L |clgnw| | 1 dng nrTwe | .2
I ateau™ — T ——— 2— i 4
et iV 2102 In|| rB [no dr L 1w |° (4)

and for the banana regime by
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For simplicity we have assumed here that the temperature T is constant with
radius. The variable z is equal t0 V,es/V/20, Where vy, = ;l—LW(w - lwg) is the
resonant velocity for the asymmetry mode n,!,w. The symbols 7, w,, and v, are
the thermal velocity, the cyclotron frequency, and the electron-electron collision
frequency, repectively.

It is worth noting several features of these solutions. Both plateau and banana
regime fluxes involve a sum over all the asymmetry modes produced by the wall
voltages. The square brackets contain a diffusive term ;}Eddir" and a generalized

mobility v225 %22 (note that this latter term reduces to eE/kT for w = 0). The
platean regime flux is independent of the collision frequency and is proportional to
the square of the asymmetry amplitude, whereas the banana regime flux depends
linearly on v, and scales like ¢,1L{3 The dominance of the flux by resonant par-
ticles is reflected in the e~*" factor which stems from evaluating the Maxwellian
distribution function at the resonant velocity. Note that x can be positive or neg-
ative as w is greater than or less than wg. Thus, while static field asymmetries
(w =0,z < 0) move electrons radially outward (I' > 0), an appropriately chosen
asymmetry (w > wg,z > 0) can move particles radially inward as is observed in
"rotating wall” experiments [6,8]. Here we use the convention that w > 0 corre-
sponds to an asymmetry that rotates with the plasma column and w < 0 to one
that rotates against the column.

The presence of w in the variable z provides the experimentalist with an ideal way
of testing the notion that resonant particles dominate the transport. By varying w
one can obtain any value of the resonant velocity v,.s and the resulting flux should
exhibit a resonance as vy sweeps through the distribution function. However this
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FIGURE 1. Computed variations of the normalized Ey at the plama center versus asymmetry
frequency w. The three curves correspond to three plasma temperatures. The strong variations in
Ej4 are produced by plasma collective effects and make it difficult to observe the resonant particle
dominance of the radial transport.

approach is complicated by the strong w-dependence of the asymmetry potential
@niw- Figure 1 shows numerical solutions of Equation (2) for typical plasma para-
meters [14]. We plot Ey = l¢nu,/r at the center of the plasma (normalized to its
value at the wall) as a function of asymmetry frequency w. Note that Ej varies by
many orders of magnitude as adjustments of w produce plasma phenomena ranging
from standing waves (the peaks of the curves) to Debye shielding (the strong dip
around w = wg). These variations in Fjp (and thus in the flux I') tend to dominate
or mask those produced by resonant particle effects. This produces, for example,
enhanced transport when the asymmetry is at a standing wave frequency of the
plasma column [6]. Nonlinear collective processes are also possible [15]. These col-
lective effects, although interesting, are not, in our view, essential to the transport
physics. We note, then, that the variations in Ey are reduced as the temperature
is increased and/or the density is reduced (see reference [14]).

These considerations led us to the modified trap design shown in Figure 2. The
plasma is replaced by a biased wire running along the axis of the trap. Electrons
injected into this device have the same dynamical motions as those in a normal non-
neutral plasma (i.e. axial bounce and azimuthal drift motions), but the collective
variations of ¢y, are eliminated since the lower density (10° em™3) and higher
temperature (4 eV) of the electrons give a Debye length larger than the trap radius.
Despite these changes, the confinement time scaling with no applied asymmetries
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FIGURE 2. Schematic of the Occidental Trap. The plasma is replaced by a biased wire that
maintains the basic dynamical motions of the injected electrons. Forty wall sectors allow for the
application of asymmetries consisting of essentially one Fourier mode.

[16] shows the same (L/B)? dependence found in higher density experiments [4],
thus supporting the notion that the transport is a single particle effect.

For the current experiments, up to forty wall sectors are employed to produce
an asymmetry consisting of a single Fourier mode, thus eliminating the sum over
n, I, and w in the flux and making for a simpler comparison between theory and
experiment. Electrons injected into the trap are quickly dispersed into an annular
distribution [17]. At the end of an experimental cycle the electrons are dumped
onto a phosphor screen and the resulting image is digitized. A radial cut through
this image gives the density profile of the electrons. Profiles are taken both with
the asymmetry on and off, and the change in density én(r) is either used directly
to approximate dn/dt or integrated to give the radial particle flux T'(r).

EXPERIMENTAL RESULTS

Our initial data addresses three aspects of the theory: 1) the scaling of transport
with asymmetry amplitude, 2) the dominance of the transport by resonant particles
and 3) the absolute magnitude of the transport flux. Figure 3 shows the scaling
of dn/dt with the amplitude of the asymmetric potential applied to the wall. The
scaling is consistent with plateau regime theory (i.e. ¢*) when the amplitude is
small and falls off to roughly ¢** at higher amplitudes. The banana regime
scaling of ¢'/2 is not observed.

Figure 4 shows the radial flux vs. asymmetry frequency at three radial positions.
The radial density profile is shown in the inset. The data is qualitatively consistent
with resonant particle theory. When the density gradient is large, the flux should
go like e, a Gaussian curve centered where w = wg. This behavior is shown by
the curves for r/R equal to 0.28 and 0.56 (note that wg is set by the center wire
bias and decreases with radius). At the top of the density profile the gradient is
zero, so we expect an ze~®" behavior, and this seems to match the /R = 0.39
curve. Although not shown, we have verified that the curves shift horizontally in
an appropriate way as the center wire bias (and thus wg) is varied. Also, if the
asymmetry is made to spin opposite the direction of wg (corresponding to negative
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FIGURE 3. Log-log plot of the asymmetry-induced rate of density change dn/dt versus the
asymmetry amplitude at the wall. The scaling is consistent with plateau-regime theory only for
low amplitudes.

values of w), no resonances are observed in the flux.

Figure 5 shows how the peak frequency of these flux resonances varies with
radius and axial mode number n, and it is here that we get our first indication of
discrepancy between theory and experiment. As noted above, the experimental
peak frequency decreases with radius as expected (open symbols), but the decrease
does not match that predicted by theory (filled symbols). Theory also predicts an
increase of peak frequency with axial mode number n. We observe an increase,
but it is not in accord with the theory.

We have also compared the amplitude of the experimentally measured flux reso-
nances with the prediction of plateau regime theory. The result is shown in Figure
6. Although the curves are similar, several discrepancies are clear. As noted
above the peaks (in this case the minima) of the resonances occur at slightly differ-
ent frequencies. More importantly, the value of the experimental flux at the peak
is roughly forty times smaller than the theoretical prediction. Lastly, although the
theoretical curve passes smoothly through w = 0 with a significant positive flux,
the experimental curve shows anomalously low transport near w = 0.

CONCLUSION

We have begun to test the resonant particle theory of asymmetry-induced trans-
port under very simple conditions. Our initial results support the idea that reso-
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FIGURE 4. Radial particle flux at three radii as a function of asymmetry frequency for center

wire bias ¢ew = —110V. The shape of the flux curves is qualitatively consistent with that expected
from theory.
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FIGURE 5. Variation of the flux resonance peak frequency with radius and axial mode number

n. The open symbols give the experimental values and the corresponding closed symbols give the
theory. For reference, the solid line gives the E' x B rotation frequency fr.
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FIGURE 6. Absolute comparison between experimental flux and the prediction of plateau
regime theory for center wire bias ¢, = —110V and r/R = 0.28. The experimental flux is

roughly forty times smaller than the theory predicts. The open symbols on the theory plot show
the contributions of the diffusive and mobility-like terms in equation (4).
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nant particles dominate the transport and we observe an amplitude scaling consis-
tent with plateau regime theory. However, several discrepancies between theory
and experiment are observed and it already seems clear that current theory does
not give a complete description of this transport.

ACKNOWLEDGEMENTS

This work was supported by U.S. Department of Energy grant DE-FGO03-
98ER54457.

REFERENCES
1. J. S. DeGrassie and J. H. Malmberg, Phys. Fluids 23, 63 (1980).
2. M. H. Douglas and T. M. O’Neil, Phys. Fluids 21, 920 (1978).
3. J. H. Malmberg and C. F. Driscoll, Phys. Rev. Lett. 44, 654 (1980).
4. C. F. Driscoll and J. H. Malmberg, Phys. Rev. Lett. 50, 167 (1983).
5. C. F. Driscoll, K. S. Fine, and J. H. Malmberg, Phys. Fluids 29, 2015 (1986).
6. D. L. Eggleston, T. M. O’Neil, and J. H. Malmberg, Phys. Rev. Lett. 53, 982 (1984).
7. J. Notte and J. Fajans, Phys. Plasmas 1, 1123 (1994).
8. X.-P. Huang et al., Phys. Rev. Lett. 78, 875 (1997).
9. D. Ryutov and G. Stupakov, JETP Lett. 26, 174 (1978).
10. D. Ryutov and G. Stupakov, Sov. J. Plasma Phys. 4, 278 (1978).
11. D. Ryutov and G. Stupakov, Sov. Phys. Dokl. 23, 412 (1978).
12. R. Cohen, Comments Plasma Phys. Cont. Fusion 4, 157 (1979).
13. R. Cohen, Nuclear Fusion 19, 1579 (1979).
14. D. L. Eggleston and T. M. O’Neil, Phys. Plasmas 6, 2699 (1999).
15. D. L. Eggleston and J. H. Malmberg, Phys. Rev. Lett. 59, 1675 (1987).
16. D. L. Eggleston, Phys. Plasmas 4, 1196 (1997).
17. D. L. Eggleston, Phys. Plasmas 1, 3850 (1994).

249



