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Abstract. Despite a large body of experimental work on asymmetry-induced transport in non-neutral plasmas, the correct theory

remains elusive. Previous work using single particle computer simulations has shown that the particle dynamics in such systems
can be quite complex. In this paper, the techniques of chaos theory are employed in an effort to better understand these dynamics.

The dynamical equations are re-conceptualized as describing time-independent trajectories in a four-dimensional space consisting

of the radius r, rotating frame angle ψ, axial position z, and axial velocity v. Initial work includes identification of an integral of
the motion, fixed-point analysis of the dynamical equations, the construction and interpretation of Poincaré sections to visualize

the dynamics, and, for the case of chaotic motion, numerical calculation of the largest Lyapunov exponent using the technique of
Benettin et. al.

Introduction

Our previous computer studies[1] of the asymmetry-induced dynamics of particles in our Malmberg-Penning trap with

a biased center wire[2] have revealed motions that cannot be described by a simple perturbation theory. In addition

to lab-frame trapped particle populations, there were indications of chaotic motion. In this paper we apply some of
the methodologies of chaos theory to single-particle dynamics in our trap in an effort to better characterize these

dynamics.

The geometry of our trap is cylindrical, so the usual cylindrical coordinates (r, θ, z) are natural, with the z origin

at one end of the confinement region of length L and radius R. With the confining magnetic field in the ẑ-direction, the
governing equations of motion are then

ṙ =
1

B
Eθ (r, θ, z, t)

θ̇ = −
1

rB
Er(r, θ, z, t) (1)

z̈ =
q

m
Ez(r, θ, z, t).

Here we have used the drift approximation for ṙ and θ̇ whereas z̈ is simply given by Newton’s second law. The

components of the electric field are derivatives of the potential which we take to be made up of a radially dependent
part φ0(r) produced by the center wire bias and an asymmetry potential φ1(r, θ, z, t).

Chaos theory takes a geometric approach to dynamics by studying trajectories in an abstract n-dimensional

space[3]. To this end, the equations of motion are cast as n first-order autonomous differential equations for n dy-

namical variables. The n dynamical variables define a point in an n-dimensional space referred to as state space or,
in the context of Hamiltonian dynamics, phase space. In addition, the n differential equations define a unique direc-

tion for the trajectory at that point. The fact that the differential equations are autonomous (i.e., without explicit time

dependence) means that the trajectories are time-independent.

To cast our equations in this form, we introduce the axial velocity v = ż and note that in our experiment the
variables θ and t come in the combination ωt − lθ ≡ −lψ. Since the components of the electric field are derivatives of
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the potential φ, we obtain

ṙ = − 1

rB

∂φ

∂ψ
(r, ψ, z)

ψ̇ = −ω
l
+

1

rB

∂φ

∂r
(r, ψ, z) (2)

v̇ = − q

m

∂φ

∂z
(r, ψ, z)

ż = v.

Thus our dynamics can be viewed as trajectories in the four-dimensional space formed by r, ψ, z, and v. Note, however,
that the quantity

E =
1

2
mv2 + qφ(r, ψ, z) − qωB

2l
r2 (3)

is a constant of the motion, as can be verified by calculating Ė and using Equs. (2). This means that the trajectories

are constrained to remain on constant E 3-D hypersurfaces in the 4-D state space.

Analytical Results

To proceed, we must now specify the form of the potential φ(r, ψ, z). We use a form that is relevant to our experimental

work:

φ(r, ψ, z) = φ0(r) + φ1(r) cos kz cos (−lψ). (4)

Here φ0(r) is produced by a biased wire along the axis of the trap, while the second term is a perturbing asymmetric
potential produced by biased wall patches, with k and l being the axial and azimuthal wavenumbers, respectively.

Using this in Equs. (2) and specifying q = −e gives

ṙ = − l

rB
φ1(r) cos kz sin (−lψ)

ψ̇ = −ω
l
+ ωR(r) +

1

rB

dφ1

dr
cos kz cos (−lψ) (5)

v̇ = −ek

m
φ1(r) sin kz cos (−lψ)

ż = v

where we have defined ωR(r) ≡ 1
rB

dφ0

dr
, the azimuthal rotation frequency produced by the biased center wire.

We first note that Equs. (5) satisfy the necessary conditions for chaos[3]. These are 1) the presence of nonlinearity

that couples at least some of the equations (provided by the sine and cosine terms) and 2) the number of equations

minus the number of constants of motion must be greater than or equal to three (we have four equations and one

constant given by Eq. (3)). Interestingly, chaos theory does not yet have a way to determine sufficient conditions. As
we shall see, trajectories for our system can be either regular or chaotic depending on initial conditions.

We next consider the fixed (or equilibrium) points of Equs. (5), i.e., those points where ṙ, ψ̇, ż, v̇ are all zero.

While these points constitute a very small portion of state space, their properties often give insights into the larger

picture[4].

From the ż equation, we see immediately that fixed points require v = 0. Similarly, from the ṙ and v̇ equations,
cos kz sin (−lψ) = 0 and sin kz cos (−lψ) = 0 are required. These can be simultaneously satisfied in two ways: 1) kz =

0,±π and −lψ = 0,±π (making sin kz and sin (−lψ) zero) or 2) kz = ± π
2

and −lψ = ± π
2

(making cos kz and cos (−lψ)

zero). Here we have restricted the domain of the sine and cosine functions to −π to +π. Finally, we require ψ̇ = 0 which

means that ωR(r) − ω
l
+ 1

rB

dφ1

dr
cos kz cos (−lψ) = 0. For the case 1 fixed points this reduces to ωR(r) − ω

l
± 1

rB

dφ1

dr
= 0

while the case 2 cases simply require ωR(r) − ω
l
= 0. Since φ1 is typically small compared to φ0, both of these cases

set the requirement that ω ≈ lωR(r), which sets the value of r for the fixed points.

We next examine the stability of the fixed points by considering small displacements δr, δψ, δv, and δz from these
equilibria. Each of the equalities in Eq. (5) can be Taylor expanded in powers of these displacements. To first order in

020001-2



the displacements, the result can be cast in matrix form:

d

dt





























δr

δψ

δv

δz





























=





























−Cr cos kz sin (−lψ) lC cos kz cos (−lψ) 0 kC sin kz sin (−lψ)

ωr + Dr cos kz cos (−lψ) lD cos kz sin (−lψ) 0 −kD sin kz cos (−lψ)

−Fr sin kz cos (−lψ) −lF sin kz sin (−lψ) 0 −kF cos kz cos (−lψ)

0 0 1 0

























































δr

δψ

δv

δz





























(6)

where C = l
rB
φ1(r), D = l

rB

dφ1

dr
, F = ek

m
φ1(r), Cr =

dC
dr

, Dr =
dD
dr

, Fr =
dF
dr

, and ωr =
dωR

dr
, and where the elements of

the 4 × 4 matrix are evaluated at the fixed point under consideration. If we denote the column vector (δr,δψ,δv,δz) as

δr and the matrix as J, we can write Eq. (6) in the compact form

δṙ = Jδr. (7)

J is called the Jacobian or stability matrix. Equation (7) can be solved by solving an associated eigenvalue problem[4].
To see this, assume that δr has the form

δr =

4
∑

i=1

ciAie
λi t (8)

where ci and λi are constants and Ai are constant four-vectors. Then

Jδr = J

4
∑

i=1

ciAie
λit =

4
∑

i=1

ciJAie
λit. (9)

The last expression is equal to δṙ if JAi = λiAi, that is, if Ai and λi are eigenvector and eigenvalue for the trans-

formation J. The solution of Eq. (7) can thus be found by finding these eigenvectors and eigenvalues and plugging

into Eq. (8). The eigenvalues are found by solving the characteristic equation of the matrix J, i.e., the determinant
|J − λI| = 0, which, in our case, gives four values λi. When each of these values is substituted into the eigenvalue

equation, we obtain the corresponding eigenvector Ai.

When the stability matrix is evaluated at the fixed points, the sine and cosine terms will give zero or ±1. For the
case 1 fixed points, J reduces to





























0 lCS 0 0

−G 0 0 0

0 0 0 −kFS

0 0 1 0





























(10)

where −G = ωr + DrS and the sign parameter S = 1 when (kz,−lψ) are either (0, 0) or (±π,±π), while S = −1 when

(kz,−lψ) are either (0,±π) or (±π, 0). The resulting eigenvalues are [−i
√

kFS , i
√

kFS ,−i
√

lCGS , i
√

lCGS ] with cor-

responding eigenvectors [(0, 0,−i
√

kFS , 1), (0, 0, i
√

kFS , 1), (i
√

lCS/G, 1, 0, 0), (−i
√

lCS/G, 1, 0, 0)]. We first note
that, because of the zeros in the eigenvectors, the motion in the r − ψ plane is independent of the motion in the v − z

plane. Secondly, since we have defined C, F, and G to be positive for typical experimental conditions, the character of

the case 1 solutions thus depends only on the sign parameter S . For S = 1 (case 1a), the eigenvalues are all imaginary.

Such a fixed point is termed elliptical (or a center) since the resulting solutions can be cast in the form of ellipses in
the r − ψ and v − z planes, with the rate of rotation about the center determined by the appropriate eigenvalue. For

S = −1 (case 1b), the eigenvalues are all real, giving so-called hyperbolic (or saddle) points. Here the solutions can

be cast in the form of hyperbolas in the r − ψ and v − z planes. Analysis of the r − ψ motion shows that the flow is

toward the origin in the first and third quadrants of the r − ψ plane and away from the origin in the second and fourth
quadrants. For the v − z motion, the flow directions are reversed.

For the case 2 fixed points, J reduces to





























0 0 0 kCS

−H 0 0 0

0 −lFS 0 0
0 0 1 0





























(11)

where −H = ωr and S = 1 when (kz,−lψ) are either (π/2, π/2) or (−π/2,−π/2), while S = −1 when (kz,−lψ)

are either (π/2,−π/2) or (−π/2, π/2). The resulting eigenvalues are [−R,−iR,iR,R] with corresponding eigenvec-
tors [(−Q,−T,−R, 1), (iQ,T,−iR, 1), (−iQ,T, iR, 1), (Q,−T,R, 1)]. Here we have defined R = (HkClF)1/4, Q =
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(k3C3/HlF)1/4, and T = (HkC/lF)1/2 for compactness, all of which are real for typical experimental conditions.
Note that here the sign parameter S has cancelled out, so all case 2 solutions have the same character. Here the mo-

tion is more difficult to characterize, but the form of the eigenvalues and eigenvectors shows that the motion is fully

four-dimensional with a mixture of elliptical and hyperbolic elements.

Numerical Results

We now turn to results obtained by numerically solving Equs. (5). To do so, we must specify further details of our
model. The potential φ0(r) is given by φcw ln (R/r)/ ln (R/a), where φcw and a are the bias and radius of the center

wire, respectively. The asymmetry potential φ1(r) is given by φ10(r/R)l, with φ10 a constant. The axial wavenumber

k = nπ/L, with n being an integer. For the results shown in this paper we use typical experimental values: B = 364 G,

φcw = −80 V, l = k = 1, ω = 0.5, φ10 = 0.2 V, and ln (R/a) = 5.3838.
Numerical solutions are obtained using Mathematica’s NDSOLVE routine. We treat our system as having infinite

extent in z with periodicity 2L, which is equivalent to assuming specular reflection at the ends of our confinement

region of length L. We use the following scalings for our solutions: r is scaled to the wall radius R, z to L, v to

v0 = 106 cm/s, time t to 10−6 s, and frequencies to either 106 Hz (for λ) or 106 rad/s (for ω).
To check the accuracy of our solutions, we plug the resulting numerical functions for r, ψ, z and v back into

Equs. (5) and take the difference between the two sides. A perfect solution would give zero for each equation. Judicious

choices among NDSOLVE’s options keep these quantities below 10−10 for our solutions, while variations in the
constant E are in the range δE/E ≈ 10−6.

While the fixed point analysis in the previous section gives some indication of the types of motion to expect,

we want to be able to characterize the motion for an arbitrary initial point in state space. Chaotic dynamics are

characterized by the exponential divergence of neighboring initial points. The rate of divergence is given by the
Lyapunov exponents, one for each dimension of the state space. The standard conceptual picture is to imagine a point

in state space surrounded by a small sphere whose surface represents neighboring initial conditions. As the system

evolves, the central point will follow its trajectory while the surface of the sphere will deform into an ellipsoid as the

sphere stretches or contracts along its axes. The average rates of change along the axes are the Lyapunov exponents
λi, defined by

λi = lim
t→∞,di(0)→0

[

1

t
ln

(

di(t)

di(0)

)]

(12)

where di(t) is the length of the ellipsoid along the ith axis at time t. The presence of chaos is then indicated by a

positive λi. While this formal definition is widely quoted, it is not of much use in numerical calculations. Since the
motion is bounded, di(t) will quickly reach its maximum value, after which the 1/t factor will decrease λi to zero.

An alternate method for calculating the largest Lyapunov exponent was developed by Benettin et. al[5]. The idea is

to follow two neighboring trajectories separated by an initial small distance d0 for a time τ, after which the distance

between them is renormalized to its initial small value. The computation is then continued until a time 2τ, at which
point the renormalization is repeated, and so on at time intervals of τ. At each multiple k of τ, the partial sum

λk =
1

kτ

k
∑

j=1

ln

(

d j

d0

)

(13)

is computed, where d j is the distance between the two trajectories before normalization. Then the maximum Lyapunov

exponent is given by

λ = lim
k→∞

λk (14)

which can be estimated by plotting λk versus k. Example plots are shown in Fig. 1. For both the cases shown, we have

taken the initial conditions to be v = 10, ψ = 0, and z = −0.05. The solid circles have initial r/R = 0.674 while the

open circles have 0.750. The numerical solutions extend only to k = 4000, but this is long enough for the first case to
show its asymptotic value. The second case continues to fall with increasing k thus implying λ = 0 (cf. Eq. (14)). As

previously discussed, positive λ indicates chaotic motion while λ = 0 occurs for regular motion.

As an aid in visualizing trajectories in our four-dimensional state space, we employ Poincaré surface of sections.

In our case, these are constructed by noting the values of r, ψ, and v whenever the trajectory passes z = 0 (or integer
multiple of 2L) with a positive velocity. We then plot ψ versus r (with ψ constrained to be between −π and π) and v
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FIGURE 1. Obtaining the Lyapunov exponent for two different initial values of r/R using the method of reference [5].

FIGURE 2. (Color online) Poincaré sections taken at the z = 0 crossing for fourteen different initial r values through time

t = 6000. a) Plot of normalized ψ versus r. Legend shows the initial r values and the corresponding Lyapunov exponent λ. b) Plot

of normalized v versus r for the same initial r values.

020001-5



versus r. The resulting plots depend on the selected initial conditions. A representative example is shown in Fig. 2.

Initial conditions are v = 10, ψ = 0, and z = −0.05 (as for Fig. 1) and we plot several initial values of r/R on the

same graph. The legend gives these initial r/R values and the value of λk at the end of the solution. In accord with

the behavior seen in Fig. 1, any λ ≤ 0.003 should be considered zero. The code is run to t = 6000 to get a reasonable
number of points.

A number of interesting features are apparent in both plots. Starting at the smallest initial r values, we see regular

motion with little variation in r or v. Then from rinit = 0.45 to 0.67 the motion is chaotic with larger variations in r

and v. Of particular note is the r/R = 0.67 case which has large radial excursions. The ellipses in Fig 2a represent

the regular motion of particles axially trapped in the asymmetry potential; they are centered on the elliptical fixed

point found in the previous section. We have chosen the initial value r/R = 0.68 because this gives the largest radial

excursion with regular motion. Note that, although the ellipses have large radial excursions, the velocity varies little
from the initial value of v = 10. At larger rinit values, the motions again becomes chaotic with large v variations, with

the exception of rinit = 0.84 with λ ≈ 0 and its symbols clustered in three groups.

Of course, the Poincaré sections shown in Fig. 2 are only a sample since the details depend on the full set of

initial conditions and the parameters. More extensive results will be included in a planned longer paper to follow, but
some general features can be mentioned here. The parameter ω determines the center of the ellipses in theψ−r section

via the condition ω ≈ ωR(r); as ω increases (decreases), the center moves to the left (right). The size of the ellipses

is determined by the parameter φ10 and the location of the center. The chaotic cases occur when the initial v is small

(roughly, less than 40), and this appears to be related to the resonance overlap condition for the velocity resonances
produced by the counter-propagating helical waves into which the asymmetry can be decomposed[1].

Finally, we note that the chaotic cases shown in Fig. 2 have λ in the range 35-93 kHz which introduces a time

scale for collisionless mixing of the orbits that is comparable to other characteristic time scales (azimuthal rotation and

axial bounce times). Similar situations have been noted in the astrophysics literature to have significant effects[6, 7].
The effect of chaos on transport in plasmas has been studied for some time[8] but it has not, to our knowledge, been

considered in the context of non-neutral plasmas.

Conclusions

We have applied some of the tools of chaos theory to a system of equations describing motion in our cylindrical

Malmberg-Penning trap. The problem was re-conceptualized as describing motion on a three-dimensional hypersur-

face in a four-dimensional space with one constant of the motion. Fixed point analysis reveals elliptical, hyperbolic,
and mixed behaviors. We used the technique of Benettin et. al. to calculate Lyapunov exponents which shows that

both regular and chaotic motion occur in our system, and this was illustrated with example Poincaré sections.
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